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Widespread biochemical reaction networks
enable Turing patterns without imposed
feedback

Shibashis Paul 1,2, Joy Adetunji1 & Tian Hong 2

Understanding self-organized pattern formation is fundamental to biology. In
1952, Alan Turing proposed a pattern-enabling mechanism in reaction-
diffusion systems containing chemical species later conceptualized as activa-
tors and inhibitors that are involved in feedback loops. However, identifying
pattern-enabling regulatory systems with the concept of feedback loops has
been a long-standing challenge. To date, very few pattern-enabling circuits
have been discovered experimentally. This is in stark contrast to ubiquitous
periodic patterns and symmetry in biology. In this work, we systematically
study Turing patterns in 23 elementary biochemical networks without
assigning any activator or inhibitor. These mass action models describe post-
synthesis interactions applicable to most proteins and RNAs in multicellular
organisms. Strikingly, we find ten simple reaction networks capable of gen-
erating Turing patterns. While these network models are consistent with
Turing’s theory mathematically, there is no apparent connection between
them and commonly used activator-feedback intuition. Instead, we identify a
unifying networkmotif that enables Turing patterns via regulated degradation
pathways with flexible diffusion rate constants of individual molecules. Our
work reveals widespread biochemical systems for pattern formation, and it
provides an alternative approach to tackle the challenge of identifying pattern-
enabling biological systems.

Self-organized pattern formation is a fundamental concept in cell
biology, development, and regeneration. In 1952, Alan Turing pro-
posed a mathematical framework for pattern formation based on
chemical reactions among diffusive substances1. These reaction-
diffusion systems can deviate from a spatially homogeneous steady
state upon small perturbations, and transition to a stable state with a
periodic pattern known as a Turing pattern (Fig. 1a). Turing patterns
have been used to explain a diverse range of intriguing biological
phenomena, such as hair follicle formation, digit morphogenesis, fin-
gerprint, feather development, skin patterns, and widespread sym-
metries in biology (e.g. flower and leaf structures)2–8. Although there
are other pattern-enabling mechanisms that are also consistent with

mathematical and biological principles9–11, they can often work in
concert with Turing pattern to support development12–15. Recent work
with homogenized X. laevis egg extracts showed that self-organization
of cytoplasm into cell-like compartments can occur in the absence of
preformed cellular boundaries16, which further suggests the impor-
tance of continuum-like reaction-diffusion systems in embryonic
development. Nonetheless, specific reaction-diffusion systems that
govern most of the Turing-patterns-like structures remain poorly
understood.

In 1972, Gierer andMeinhardt proposed an intuitivemodel for the
molecular mechanisms underlying Turing patterns: a two-component
reaction-diffusion system containing an ‘activator’ molecule with low
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diffusion rate and an ‘inhibitor’ molecule with high diffusion rate
(Fig. 1b box)17. Thismodel was extended into awidely accepted “rule of
thumb” for Turing pattern formation: a combination of long-range
negative feedback and short-range positive feedback (defined as
activator-negative-feedback here) (Fig. 1b)18,19. This intuitive require-
ment of a two-component system is consistent with Turing’s mathe-
matical concept, and it enabled the identification of some of the
specific systems governing pattern formation. However, despite dec-
ades of efforts to connect the theory-driven intuition to biological
phenomenon, very few activator-negative-feedback systems (Fig. 1b)
have been identified and rigorously verified with experiments20. The
scarcity of these molecular systems discovered to date contrasts
sharplywith thewidespreadbiological patterns potentially explainable
by the concept of Turing pattern formation.

Recent theorical studies have expanded the possibilities of
molecular systems underlying Turing patterns. For example, pattern-
enabling regulatory networks containing three molecules (nodes)
were systematically explored21–23. While these studies are useful to
understand Turing patterns driven by systems beyond two-
component systems, the proposed gene regulatory networks are still
directly underpinned by the activator-negative-feedback intuition
(Fig. 1b). Similarly, a recent study that identified minimal pattern-
enabling systems with mass-action kinetics also used a two-compo-
nent, activator-negative-feedback framework24. At the fundamental
level, these approaches rely on the abstraction of complex molecular
interactions into signed directed graphs (Fig. 1b) for making connec-
tions to specific biological systems. In these graphs, one molecular
regulation (edge) involves only a pair of nodes, each of which is either
an activator or an inhibitor. As a result, the activator-negative-feedback
concept remains to be the only intuitive model for identifying Turing
systems in biology to date. In most biochemical reactions, however, it
is difficult to recognize activator and inhibitor, and this has been a
long-standing challenge to bridge Turing’s theory and real-world
mechanisms in biochemical systems25. It is therefore unclear whether
there are common biochemical reactions, including those not readily
described by graphs (e.g. reactions in Fig. 1c and their variants), that
can produce Turing patterns.

In this work, we used the first principles of biochemistry to build
models describing reaction-diffusion systems applicable to most

proteins and RNAs in multicellular organisms. These systems include
production, degradation, binding, and diffusion of molecules with no
activator/inhibitor identity assigned to any molecule. By analyzing
these mass-action-based models, we found that a large family of
reaction networks, applicable to several thousand of proteins and
RNAs according to transcriptome- and proteome-wide experiments
and bioinformatic analysis, can generate Turing patterns. While these
networks are mathematically consistent with Turing’s theory of mor-
phogenesis, there is no apparent connection between them and the
commonly used activator-negative-feedback intuition. The simplest
pattern-enabling reaction only requires the formation of a trimer
molecule via sequential binding, and the altered degradation rate
constants of monomers upon binding. The pattern-enabling models
not only captured well-known diffusive proteins involved in morpho-
genesis, but also predicted roles of various other molecules and pro-
cesses, such as mobile RNAs and post-transcriptional regulations,
which were previously underappreciated in tissue patterning. Our
work reveals unexpected, widespread molecular systems for pattern
formation, and it provides a novel approach to tackle the long-
standing challenge of connecting Turing’s theory to specific biological
systems.

Results
A systematic search for Turing pattern enabling reaction net-
works without imposed feedback
To address the question of whether common biochemical reactions
with no apparent feedback loop can generate Turing patterns, we first
enumerated 11 basic types of biochemical “complexes” formed by
noncovalent interactions between regulatory molecules such as RNAs
and proteins (Fig. 2a, 11 icons with various numbers of circles). These
complexes correspond to all topologically distinct configurations with
up to four subunits (e.g., protein chains and RNAmolecules) (denoted
as A, B, C and D or the four types of circles in Fig. 2a. seeMethods). We
next considered elementary reaction networks that lead to the for-
mation of the complexes via binding. Each complex in Fig. 2a can be
viewed as the “final product”of each reaction network and is defined as
characteristic complex with respect to the network. In addition to
binding and unbinding, each network includes constant synthesis of
the unbound molecules, degradation of each molecule in each com-
plex, and diffusions of all chemical species (e.g., Fig. 2a callout). The
inclusion of production and degradation is because the timescale of
pattern formation process in biology is often comparable to or slower
than typical half-lives of RNAs and proteins (see Methods). We
described each reactionwithmass-action kinetics. The 11 characteristic
complexes (Fig. 2a) and their associated reactions (e.g. Fig. 2a callout)
are fundamental processes applicable to virtually all biomolecules in
cells. Of note, these networks are different from previous graph-based
approaches for studying Turing systems in that the networks chosen
here describe regulations at post-synthesis stages, which typically
correspond to post-transcriptional and post-translational processes
widespread in biology, whereas transcriptional networks (i.e. genes
turning each other ‘on/off’) and their associated graphs were often
used in previous studies21–23. Our modeling framework also differ from
previous mass-action based models24,26, i.e., we explicitly describe
complex formation as an elementary and ubiquitous biochemical
reaction, and we do not attempt to produce Turing patterns from
minimal systems that can be interpreted directly with the activator-
negative-feedback concept. Our goal is to test whether each reaction
network leading to the formation of characteristic complexes can
produce Turing patterns with biologically plausible parameter values.

While the 11 complexes allow us to examine biochemical reactions
with various complexities, each complex may be formed by multiple
sets of binding events (e.g. AA + B→AAB or AB +A→AAB). As a result,
23 distinct networks (i.e. reaction paths) leading to the formation of
the 11 complexeswere included inour analysis (Fig. 2b. Production and
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tems governing Turing patterns. c Common biochemical reaction networks based
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signed directed graphs. The goal of this study is to identify widespread reaction
networks capable of generating Turing patterns.
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degradation not shown). We built a mathematical model for each
network with mass-action kinetics using ordinary differential equa-
tions (ODEs). We further extended these models to include Fickian
diffusion of all molecules, which gave rise to the partial differential
equations (PDEs) (see Methods and Supplementary Information). The
models contain 1–11 variables representing concentrations of mole-
cular species.

Using analytical approaches such as the Routh-Hurwitz
Criterion27,28, we found that five networks cannot generate any Tur-
ing pattern with arbitrary positive rate constants (see Methods and
Supplementary Information) (Fig. 2b, pink triangles. Supplementary
Figs. S1–S3). For each of the remaining 18 reaction paths (models), we
used a computational pipeline (Fig. 3c. Supplementary Fig. S4) to
search for possible parameter sets that cangenerate Turing patterns. It
has been shown that Turing patterns (stationary periodicity in space)
often appear below the instability thresholdofHopf bifurcations at the
temporally stable regions, whereas limit cycle oscillations (periodicity
in time) are observed above the instability threshold of Hopf
bifurcation29–31. Albeit Turing patterns can be observed even in the
absence of Hopf bifurcation, to enhance the efficiency of the compu-
tational pipeline we first considered only the reaction, but not the
diffusion, terms in our models, and asked whether the ODE system for
each reaction network (path) can generate Hopf bifurcations. We
selected 10,000 parameter sets for each ODE system and performed
numerical continuation for each set to find Hopf bifurcations. These
parameter sets were randomly chosen from biologically plausible
ranges covering two orders of magnitude (see Methods. Supplemen-
tary Table S1). The Hopf bifurcations served as the “encouraging”
bifurcation that allowed us to search for Turing bifurcation efficiently.
For reaction paths that produced Hopf bifurcations, we added the

diffusion terms back into the models, which yielded systems of PDEs.
We randomly sampled diffusion coefficients, and identified Turing
pattern-enabling parameter sets by analyzing dispersion relations and
simulating the PDEs numerically (see Methods) (Fig. 2c)21,22,32–34.

Among the 18 reaction networks with inconclusive algebraic
analysis, we found that 10 of them, corresponding to 6 characteristic
complexes, produced Hopf bifurcations with biologically plausible
parameters (Fig. 2a, b boxes). While none of these paths contains any
imposed negative feedback loop often considered a requirement for
oscillation (Hopf bifurcation), our results are consistent with recent
studies that showed the abilities for post-transcriptional and post-
translational reaction networks to generate oscillation without
imposed feedback35–37. All 10 PDE models derived from the Hopf
bifurcation-enabling reaction networks also produced Turing patterns
with some combinations of reaction parameters and diffusion coeffi-
cients (Fig. 2b, boxes; Fig. 3a; Supplementary Data 1 and Supplemen-
tary Data 2). Overall, for the 10 Turing pattern-enabling models, 2% of
the randomly generated ODE parameter sets gave rise to Hopf bifur-
cations, and 0.13% of parameter sets for the full reaction-diffusion
systems produced Turing patterns (Fig. 3a. Supplementary Fig. S6).
The latter fraction is comparable to a previous study for quantifying
the robustness of activator-inhibitor Turing systems21. Nearly all
parameter sets with Hopf bifurcation produced Turing patterns with
some combinations of diffusion coefficients (Supplementary Fig. S7),
and unsurprisingly, there was a positive correlation between percen-
tages of Hopf bifurcations and Turing patterns across the models
(Fig. 3a). Although parameter sets that did not produce Hopf bifur-
cations in ODE models can also generate Turing patterns in PDE
models, the percentage of pattern-enabling sets in this group was very
low (<3%). We therefore did not include dispersion analysis for the
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Fig. 2 | A screen for pattern-enabling reaction networks. a 10 complexes with
various configurations containing 1–4 subunits (circles). Callout shows an example
of reaction networks associated with a characteristic complex. Square boxes show
pattern-enabling complexes (see B and C for procedures leading to these conclu-
sions). b Illustration of binding reactions in networks (paths, models) leading to
complexes shown in A. Each color of arrows in a network corresponds to one
binding reaction. Synthesis, degradation, and diffusion of each subunit are not
shown but are included in models. Triangles indicate networks analytically shown
to be incapable of producing Turing patterns. Boxes show pattern-enabling

networks (see C for procedures leading to these conclusions). Inset boxes display
examples of stationary patterns illustrating concentrations of free B at time 500
and a box length of 100, simulated with a temporal step size of 10−4 and a spatial
grid size of 1.0. The physical interpretations of time and space are described
in Supplementary Information. Color gradients are normalized across the 10
models, but the minimum range (max-min) is 0.26 units of concentration. c A
flowchart for screening reaction networks capable of producing Turing patterns
(see Methods for details). Source data are provided as a Source Data file.
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bifurcation-free ODE set in our main computational pipeline for effi-
ciency considerations (Fig. 2c). Taken together, our results show that a
wide rangeof basicbiochemical reactions canproduceTuringpatterns
without any imposed feedback loop (see Discussion for a comparison
between explicit and implicit feedback).

Network topology required for Turing pattern-enabling
reactions
Our high-throughput network and parameter scanning allows us to
examine the requirements for the reaction networks to achieve Turing
patterns. In this section, we describe requirements in terms of network
structures. In the next section, we will discuss the requirements of
kinetic rate constants.

Each of the 10 pattern-enabling reaction networks contain at least
two different molecules (Fig. 2b, black and white circles). Note that in
the model, different molecules specifically refer to molecules with
different parameters such as degradation rate constants (The para-
meter values differ by up to 100 folds, e.g. Supplementary Fig. S8. See
next section for detailed analysis). Furthermore, the characteristic
complex of a pattern-enabling reaction network is either heterotrimers
or heterotetramers (Fig. 2b).Most interestingly, we found that a simple
network motif is present in each pattern-enabling network and absent
in each network that failed to produce a pattern (Fig. 3b). This motif
contains a monomer that is sequentially involved in the formation of
twoheterocomplexes in a ‘feed-forward’manner (Fig. 3B,MonomerX).

Reaction network AAB-2 is the simplest reaction network that contains
thismotif, while other pattern-enabling networks are connected to this
motif via three distinct ways: 1) a smaller pattern-enabling network
(AAB-2 or its derivative) is a subnetwork of a larger pattern-enabling
network (Fig. 3c, orange arrows); 2) a pattern enabling network is
expanded by homodimerization of a molecular species to generate
another pattern-enabling network (Fig. 3c, green arrows); and 3) a
pattern enabling network is a special case of a general pattern-enabling
network that has more types of subunits (Fig. 3c, blue arrows).

It should be noted that the networks in our study are hypergraphs
(each edge that represents binding involves 3 nodes) rather than reg-
ular graphs commonly used for defining feed-forward loops. These
two types of graphs have very different mathematical properties. We
therefore do not claim that we found pattern-enabling feed-forward
loops. Nonetheless, the simple motif shown in Fig. 3b (see later sec-
tions for its prevalence in biology) is sufficient for distinguishing the
pattern-enabling networks from all other ones used in our search, and
these results showed that network topology is important for Turing
pattern formation even in the absence of imposed feedback and
activator-inhibitor identities.

It was shown that there are two types of instability for Turing
patterns (Type 1 and Type 2) that can be revealed by dispersion ana-
lysis. The systems showing Type 1 variant of Turing instability remain
stable at small length scale perturbations and characterized by non-
zero diffusion of all the molecules comprising the system38, whereas

(2)

Is a special case of

Extends with homo-
dimerization to

Is a subnetwork of

*

a c

b
(2)

(3)

(3)

(2)

(2)

d
Maxima

after 
intercept

Final

Initial

Final

Maximum
after intercept

Minimum 
before intercept

Initial

Monomer X

Heterocomplex 2

Heterocomplex 1

Species Y

One or more deg-
radation reactions
Synthesis

Binding
Optional 
dimerization

Minima 
before 
intercept

First x-intercept 

k

Re
(λ

) m
ax Type 1

+

−
k

Re
(λ

) m
ax Type 2

+

−

k

Fig. 3 | Topological requirements for pattern-enabling reaction networks.
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Type 2 instability is associated to the systems comprising one or more
non-diffusive molecules21,22,39. Because all pattern-enabling networks
have the same origin in terms of their topologies (Fig. 3b, c), we
hypothesized that they are of the same Turing pattern type. We
therefore analyzed the dispersion curves of all pattern-enabling para-
meter sets for all networks.We found that all of themproduced Turing
pattern via Type 1 instability (Fig. 3d. Supplementary Fig. S5) and the
finding reinforces the validity of the current PDEmodel by assuring the
sustenance of continuum hypothesis throughout the parameter
space38. This result further supports the uniform fundamental
mechanism for pattern formation via the 10 basic reaction networks,
and it suggests the importance of diffusion in the patterns that we
observed.

Kinetic rate constant requirement for Turing pattern-enabling
reactions
With the 10 pattern-enabling reaction networks, we asked whether
Turing patterns were observed in a specific range of each parameter.
Because the 10 networks have different numbers of parameters, we
analyzed three major groups of parameters instead of individual
parameters: 1) scaled association constants (denoted by K with

subscripts representing complexes) reflecting the binding affinities; 2)
scaleddegradation rate constants formonomerA, C andD (denoted as
χA, χC and χD, which were scaled with respect to monomer B’s degra-
dation rate constant); and 3) relative degradation rate constants (also
defined as regulated degradation factors, i.e. RDFs) of each molecules
in each complex (α, β, γ, and δ with subscripts representing com-
plexes) with respect to the corresponding monomer. We found that
while it is more likely for models with greater binding affinities (K),
particularly with dimer formation, to generate patterns, patterns were
observed in a wide range of K (Fig. 4a, top). In contrast, lower mono-
mer degradation rates with respect to B markedly enhanced the like-
lihood of pattern formation (Fig. 4a, middle). Nonetheless, patterns
were observed across two orders of magnitudes of these rate con-
stants. In addition, we found that different molecules can have sig-
nificantly different monomer degradation rate constants in those
pattern-enabling sets even if the two molecules (e.g. A and C in the
ABC-1 model) have similar reactions in the network (Supplementary
Fig. S8). Interestingly, we foundmore pattern-enabling parameter sets
with lower degradation rates in complexes (i.e. RDFs) in dimers,
whereas the ability for pattern formation did not depend strongly on
other individual RDFs (Fig. 4a, bottom).
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To interrogate the dependence of pattern formation on the
cooperativities of parameters, we perturbed the parameter ranges
with various imposed restrictions, and performed the computational
searches for Turing patterns with the perturbed ranges (Fig. 4b). We
found that binding cooperativity is not required for pattern formation,
i.e., all complexes in a model can be formed with the same binding
affinity without losing the capacity of pattern formation. There was a
simple positive correlation between binding affinity and percentages
of pattern-enabling parameter sets in all 10 networks (Fig. 4b). Inter-
estingly, highly positive binding cooperativity (i.e. higher binding
affinities in higher order complexes) dramatically decreased the per-
centages of pattern-enabling parameter sets for most networks
(Fig. 4b). In contrast, negative binding affinities generally increased the
percentages of pattern-enabling parameter sets even if the overall
binding affinities were lower than the unperturbed ones (Fig. 4b). We
observed that these perturbations had different extents of impact on
the 10 pattern-enabling networks. For example, the AABB-3 network
had an exceptionally low sensitivity to the perturbation to positive
cooperativity. Similar tomost other networks, the AAAB-1 network had
significantly higher percentages of pattern-enabling parameter sets
upon switching to negative binding cooperativity, whereas for the
AAAB-3 network, the pattern-enabling ability was reduced with the
same perturbation (Fig. 4b).

Although differences among monomer degradation rate con-
stants were not strictly required for pattern formation, equalizing all
four monomers’ degradation rate constants resulted in significantly
lower fractions of pattern-enabling parameter sets, compared to both
unperturbed conditions, as well as a perturbed condition allowing a
difference between monomer B’s degradation rate constants and that
of other monomers (Fig. 4b). Finally, although mechanisms for com-
plex formation can either protect all molecules from degradation or
enhance their degradation for most networks (Fig. 4b), equalizing the
RDFs for all molecules (i.e. all subunits degrade with the same rate
constant in all complexes) completely abolished the ability of pattern
formation for all networks (Fig. 4b).

The stark contrast between the perturbation by equalizing RDFs
and their broad distributions among pattern-enabling parameter sets
(Fig. 4a, b, bottom) suggested that pattern formation could be sensi-
tive to the ratios, rather than individual values, of RDFs within each
model. We therefore examined the distributions of trimer-to-dimer
ratios of RDFs for A and B (αXXX/αXX and βXXX/βXX) under the unper-
turbed condition, and we found that the pattern-enabling parameter
sets tend to have higher trimer-to-dimer RDF ratio for B (Fig. 4c) when
parameter sets of all networks were combined. When we compared
two networks containing only A and B molecules, AAB-2 and AAAB-4,
we found that the pattern formation is generally correlatedwith higher
trimer-to-dimer RDF ratios for AAB-2 but not AAAB-4 (Fig. 4d, e).
However, the pattern-enabling parameter sets for the AAAB-4 network
had high tetramer-to-dimer RDF ratios for B compared to the back-
ground (Fig. 4f). This shows that even though AAB-2 is a subnetwork of
AAAB-4, AAB-2’s requirements of RDFs for pattern formation may be
replaced by those of RDFs in higher order complexes. In summary,
among all three types of rate constants, pattern formation was most
sensitive to ratios of RDFs, and it was significantly sensitive to the
individual degradation rate constants of monomers. While network
topology of binding reactions is important for pattern formation
(Fig. 2b), fraction of pattern-enabling parameter sets is not very sen-
sitive to variations of binding affinities (Fig. 4g).

We next asked whether Turing pattern formation requires dif-
ferences among diffusion coefficients (D) of molecular species in a
model. For theAAB-2model, pattern-enablingparameter sets hadwide
distributions of diffusion coefficients of A and Bmonomers. There was
only moderate skewness of the distributions of DA and DB (Fig. 5a, top
callout), suggesting therewas not a strong preference for slow- or fast-
diffusing monomers. In contrast, the distributions of DAB and DAAB

were highly skewed. Patterns seem to be enabled by high DAB (highly
negative skewness) and low DAAB (highly positive skewness) (Fig. 5a,
top callout), reflecting a physically plausible scenario of critical slow-
down of diffusion upon trimer formation. The preference for slow
diffusion of the largest complex, and fast diffusion of the second lar-
gest complex was also observed with five other pattern-enabling net-
works as a general trend (Fig. 5a, top cluster in heatmap). In addition,
ordereddiffusion coefficients from large, slowcomplexes to small, fast
complexes/monomers were observed in nine out of the ten pattern-
enabling networks (Supplementary Fig. S9). Nonetheless, two models
(AABB-3 and -4) had the opposite trend: pattern-enabling parameter
sets generally had higher diffusion coefficients of the largest complex
compared to those of the second largest complex (Fig. 5a, bottom
callout and heatmap). In all pattern-enabling models, the monomers
had weak skewness of diffusion coefficients’ distributions (Fig. 5a,
heatmap), suggesting that these parameters are flexible for generating
Turing patterns.

To test the causal relationship between specific diffusion coeffi-
cients and pattern formation, we selected two representative pattern-
enabling parameter sets for the AAB-2model which has fourmolecular
species. In Set I (Fig. 5b, left), the twomonomers and thedimerABhave
the samediffusion coefficient, and the trimer AABhas a lower diffusion
coefficient. In Set II (Fig. 5c, left), Subunit B serves as a diffusion
facilitator and the diffusion coefficients of the four molecular species
were ordered accordingly. In both cases, when we perturbed the
parameter set by equalizing the diffusion coefficients of AAB and AB,
we found that the patterns were lost (Fig. 5b, c). We found that
although differential diffusivity is required to achieve Turing patterns
in our models, the differences among diffusion coefficients were
moderate in most pattern-enabling parameter sets (Supplementary
Fig. S10, Fig. 5b). In addition, our models do not assume any immobile
molecules. Therefore, the requirements on differential diffusion rates
in our models are less stringent than those in most conventional
models of Turing patterns.

Omics-level prediction of potential biochemical complexes
enabling Turing patterns
What are possible biomolecules involved in the 6 pattern-enabling
complexes (Fig. 2a boxes)? To address this question, we inferred
human protein complexes and mRNA-microRNA complexes as exam-
ples of high-order complexes with configurations of subunits specified
in Fig. 2a. For protein complexes predicted at the proteomic level, we
used data integrated from 15,000mass spectrometry experiments and
other experimental data40. For mRNA-microRNA complexes predicted
at the transcriptomic level, we used sequence-based target prediction
of microRNAs41 (see Methods). We found that almost 9000 human
proteins are involved in complexes that match configurations pre-
dicted to enable Turing patterns (Fig. 6a. Blue filled bars and black
boxes). Similarly, nearly half of human genes’ mRNA products can be
potentially involved in high-order mRNA-microRNA complexes that
were predicted to be pattern-enabling (Fig. 6a. Filled red bars). In
particular, the pattern-enabling configuration ABC and its associated
reaction network ABC-1 has most instances for both proteins and
mRNAs (Fig. 6a). The predicted complexes not only include somewell-
known diffusive molecules crucial for development and regeneration
(Fig. 6b)42–49, but also contain a wide range of proteins and RNAs that
can enable new hypotheses of mechanisms underlying Turing pattern
formation (Supplementary Data 3). Due to the lack of measured rate
constants in these predicted systems, we were not able to further
constrain the list of gene products that enable Turing patterns with
experimental data. This qualitative inference of complexes is therefore
not sufficient to identify pattern-enabling molecules definitively, and
the pool of complex-associated gene products should be viewed as a
preliminary set for subsequent screening in future studies. It should be
noted, however, that this limitation also applies to the classical
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Fig. 5 | Distributions of diffusion parameters enabling patterns. a Histograms
show distributions of diffusion coefficients in two pattern-enabling models. All
sampled parameters are shown in gray and those enabling patterns are shown in
blue and orange. Heatmap shows the skewness of the distributions of pattern-
enabling diffusion coefficients for subunits of 3–4 complexes in all 10 models.
b, c The left plots show stationary patterns of free B concentrations from simula-
tions with two representative pattern-enabling parameter sets. Values of

dimensionless diffusion coefficients shown in icons (one unit of dimensionless
diffusion coefficient corresponds to approximately4.6 μm2 s−1 with a representative
length scale. Detailed description regarding the unit of diffusion coefficients is
provided in the Supplementary Information). The right plots show perturbed dif-
fusion coefficients and resultant stationary distributions of free B concentration.
Source data are provided as a Source Data file.
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activator-inhibitor paradigm for identifying systems for Turing pat-
terns. Our findings on the broad range of proteins and RNAs whose
network topologies permit Turing patterns suggest the need of mea-
surements for key parameters, such as degradation rate constants and
diffusion coefficients as shown in the previous section, for predicting
Turing pattern-enabling systems more accurately.

Despite the limitation, we asked whether our prediction provides
a meaningful list of proteins and RNAs that are involved in biological
processes related to pattern formation. We performed functional
enrichment analysis for membrane and secreted proteins which are
more likely to be transported between cells50. We found that with a
background of these proteins from secretome and membrane
proteome51, those involved in high-order, pattern-enabling complexes
are enriched with functional terms for a wide range of developmental
processes (Fig. 6c. See Methods). The mRNAs involved in high-order
mRNA-microRNA complexes are also involved in many pattern-
formation processes, although the folds of enrichment are moderate
due to the large number of mRNAs in the gene set (Supplementary
Data 4). These results suggest that pattern formation in development
may be a function of proteins in high-order complexes even in the
absence of explicit feedback loops of gene regulation. Nonetheless, it
should be noted that there aremany biological scenarios underpinned
by functionally important Turing patterns besides tissue level pat-
terning in development. The length scales of ourmathematicalmodels
cover both intracellular and tissue-level patterns, so the potential
biological functions arising from the complex-driven Turing patterns
can be very broad (see Supplementary Information and Discussion).

Discussion
Since Gierer and Meinhardt’s interpretation of self-organized pattern
formationmechanismproposed by Turing1,17, biologists have been using
the activator-feedback paradigm (Fig. 1b) to search for molecular net-
works supporting patterns. This intuitive connection between biological
networks and Turing’s mathematical concept is based on sign patterns
of the Jacobian matrix at steady states of ODEs. The sign patterns are
signed directed graphs that can be conveniently interpreted as gene
regulatory networks (Fig. 1b and Supplementary Fig. S11). This approach
is therefore widely used due to its convenience in both biology and
mathematics21–23,52, and the concept of pattern-enabling feedback was
also extended to the mechanochemical level14. In contrast to previous
studies, we show that very common biochemical reaction networks
without apparent feedback structures (including autocatalysis) can
generate Turing patterns. While the sign patterns of the Jacobian
matrices for the underlying pattern-enabling models still contains the
activator-feedback motifs (Supplementary Fig. S11), such motifs also
exist in reaction networks that failed to produce patterns (e.g. AB-1,
AAA-1, and AAB-1. Supplementary Figs. S11, S12). Furthermore, simple
structures of biochemical reactions can give rise to overly complicated
signed directed graphs that are difficult to interpret from the viewpoint
of gene interactions (Supplementary Fig. S11). Our study therefore
suggests a new approach for connecting Turing’s theory to real-world
instances of pattern-enabling biological systems. This approach is based
on a simple set of signature molecular interactions (Fig. 3b) that do not
depend on activations or inhibitions of molecular productions that are
often used to derive pattern-enabling networks in biology.

a
Estimated instances

involved in complexes

protein in protein
complex

mRNA in 
mRNA-miRNA
complex

Turing pattern-
enabling complex

299 
proteins

12 
proteins

c

b
WNT4 WNT7B

WLS

TLL1 TLL2

BMP1

Follicular development
Limb regeneration
Vascular development

Bone and cartilage 
development 

STRING

hu.MAP 

TargetScan

Secretome

Fig. 6 | Omics-level estimation of instances of pattern-enabling complexes.
a Numbers of genes whose products are involved in protein (blue) and mRNA-
microRNA (red) complexes with indicated configurations inferred from experi-
mental data of protein interaction and sequence complementary respectively. Each
bar has amaximumof 20,000, and the filled portion indicates the estimates for the
configuration shown on the left. b Examples of protein and mRNA-microRNA

complexes that potentially enable patterns. Connecting lines in the protein com-
plex icon indicated experimentally supported pairwise physical interaction. Known
biological functions of the proteins and mRNAs are annotated. c Functional
enrichment of secreted and membrane proteins involved in high-order config-
urations that potentially enable patterns (boxes in a). Source data are provided as a
Source Data file.
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In addition to the requirements of the simple network structure
(Fig. 3b), our analysis showed that the choice of parameter values,
particularly ratios between the degradation rate constants of protein/
RNA subunits in various complexes, can be crucial for pattern forma-
tion. While these requirements are difficult to validate with experi-
mental data in a high-throughput manner, altered degradation rates
uponmolecular binding as well as functional cooperativity upon high-
order complex formation are common inbiology53–55. In addition to the
direct interpretation of molecular degradation, the first-order decay
rates of the molecules in our models can be generalized to rates of
removal from a specific location (e.g. removal of molecules from
plasma membrane via endocytosis56) where patterns can arise. None-
theless, future experiments are needed to test the models’ predictions
of the parametric requirements for pattern formation.

Previous studies have provided strategies to selectmodels and/or
parameters to achieve specific patterns driven by reaction-diffusion
systems26,57. In our work, multiple types of Turing patterns such as
spots and labyrinths were observed (Fig. 2, Supplementary Fig. S4,
Supplementary Data 1). While our work did not distinguish network
structures or parameter values in terms of their ability to produce
specific types of patterns, the expansion of reaction networks under-
pinning various patterns may facilitate future investigations on model
selections, especially when molecular constraints are available in
specific systems. Particularly, our results can help to generate new
hypotheses focused on degradation/removal-based reactions rather
than requiring auto-activation or other types of feedback commonly
assumed for Turing pattern-enabling systems. Nonetheless, future
work will be needed to compare the pattern-enabling reaction net-
works described in this study and previously published networks with
specific constraints on details of observed patterns or molecular
pathways.

Our models for pattern formation focused on systems with dif-
fusive models only. Pattern formation at the tissue level may utilize
preformed structures with molecules not diffusive across the system
(e.g. gene regulation purely driven by intracellular mechanisms)38,58–60.
Future work is needed to investigate the relationship between the
mechanism proposed in this study and hybrid systems with both dif-
fusive and immobile molecules. Nonetheless, because our models do
not require gene regulations at the production level, the spatial scales
of pattern formation arising from the proposed mechanism can be at
both the intracellular and the multicellular levels. Intracellular diffu-
sion of molecules are ubiquitous and its effects on subcellular pattern
formationhas been studied recently61. Furthermore, ourwork suggests
a plausible connection between Turing pattern formation and widely
subcellular phase separation that may also produce periodic patterns.
Tissue-level movements of proteins and RNAs are also common via
mechanisms such as secretion, symplastic pathways, and extracellular
vesicles55,62,63, which suggests that the continuum assumption of mul-
ticellular space in ourmodels canbe realistic in some systems.Notably,
the ranges of rate constants used in ourmodels are consistent with the
biologically relevant spatial scales of cells and tissues (see Supple-
mentary Information). Overall, our study provides a new approach to
connect mechanisms of Turing pattern formation to widespread bio-
chemical reactions with no apparent structure of feedback loops. We
expect that our method and predictions will facilitate discoveries of
more pattern-enabling systems containing proteins and RNAs at mul-
tiple scales.

Methods
ODE model construction
We have adopted a systematic method to construct models for com-
plex formation using mass action kinetics. In the process of model
construction, we have started our scanning from the simplest possible
model in the context of biochemical complex formation, i.e., com-
plexes with only one species, and thereafter chronologically scanned

all the possible pathways leading to homomeric and heteromeric
complexes constituting amaximumof four species. The entire process
of scanning biochemical networks yields a sum of 23 network path-
ways, resulting in 11 unique complexes. The ordinary differential
equations depicting the temporal dynamics of the complex formation
were made dimensionless by scaling variables and parameters using
degradation and synthesis rate constants of two distinct monomers
(A and B, as per our formulation, were used to represent these distinct
monomers, respectively). Consequently, the scaling of the variables
and parameters results in the approximate correspondence of one-
time unit in the models to 1.44 times the half-life of the second
monomer B. After generating the dimensionless kinetic models
(see Supplementary Information), weutilized them to investigateHopf
bifurcations and eventually identified Turing patterns within the
models with the added diffusive terms.

PDE model construction
For each model, we introduced diffusive terms into the ordinary dif-
ferential equations, transforming them into partial differential equa-
tions. To standardize the diffusive terms, we scaled the equations
using a spatial scaling parameter (r0). The spatial scaling parameter r0
(i.e. one unit length) in our models has values spanning the range of
1.6–3207 μm. Typically, one spatial unit in our models represents 363
μm which roughly corresponds to 24 times the median diameter of
human epithelial cells. The PDEs for all models are included in Sup-
plementary Information. For example, the PDE system of the AB-1
network is given as:

∂ A½ �=∂t = 1� χA A½ �+ κoff AB½ � � κon A½ � B½ �+βAB AB½ �+DA∇
2 A½ �

∂ B½ �=∂t = σB � ½B� � κon½A�½B�+ κoff ½AB�+ χAαAB½AB�+DB∇
2½B�

∂ AB½ �=∂t = κon A½ � B½ � � κoff AB½ � � αAB AB½ � � βAB AB½ �+DAB∇
2 AB½ �,

ð1Þ

where [A], [B] and [AB] represent the dimensionless concentrations of
free A, free B, and AB complex, respectively. The parameters in Eq. 1
were also dimensionless. σB represents the transcription rate constant
of B. κon represents the association rate constant. κoff represents the
dissociation rate constant. χA is the degradation rate constant of A. αAB
and βAB are regulated degradation factors (RDFs). αAB represents how
fast A is degraded in the complex relative to its unbound form, and βAB
is the corresponding factor for B. DA, DB and DAB are diffusion coeffi-
cients for the threemolecular species.∇2 is the Laplacianoperator. The
meanings of other parameters in other models are defined similarly.

Together with other fourmodels, we analytically proved that Eq. 1
cannot have any unstable steady state with arbitrary positive rate
constants, even though Eq. 1 has implicit feedback loops whose
structures were considered sufficient to generate Turing patterns
(see Supplementary Information).

Algebraic analysis
We adopted a search by negation approach to analyze the Turing
pattern in these biochemical reaction networks. As the initial step, we
employed analytical approaches to eliminate models that could not
induce instability in the system. The linear stability analysis of models
containing one or two components dismisses their capacity to exhibit
any form of pattern-enabling bifurcation. For models comprising
more than two components, we conducted the analysis with the
Routh-Hurwitz Criterion27,28, which led to the elimination of three
additional models. However, models with more than three compo-
nents did not provide conclusive results during the analysis with the
Routh-Hurwitz Criterion. Therefore, following the algebraic analysis,
18 models are left for further investigation. Previous studies on sys-
tematic search for pattern-enabling networks typically combined
analytical and computational approaches for screening reaction dif-
fusion systems. We used a similar strategy in this work (as described in
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the following three sections). Nonetheless, we expect that more
sophisticated algebraic methods will be useful for analyzing the 18
networks more efficiently.

ODE parameter sampling and numerical bifurcation analysis
To explore the intriguing dynamical characteristics of the remaining 18
models, we employed numerical continuation techniques to conduct
bifurcation analysis. To cover the entire biologically plausible para-
meter space, we randomly sampled 104 parameter sets for eachmodel.
We used log-uniformdistributions of the parameters using established
ranges of biologically feasible values covering two orders of magni-
tude, as detailed in the Supplementary Information (Supplementary
Table S1).

The synthesis rate constant of species B (σB) (or σA for single-
subunit systems) served as the control parameter for numerical
bifurcation analysis, quantifying the steady-state signal-response
relationship within the range of 0 to 120. The initial equilibrium point
was obtained with numerical simulation at σB = 0 (or σA =0 for single
subunit systems) using randomized initial conditions, and each of the
18 systems has a single positive equilibrium point under this condition
(see Supplementary Information). The Tellurium package (version
2.2.4) in python64, which includes a plugin of an implementation of
AUTO65, was used to detect local bifurcation (e.g. Hopf bifurcation and
saddle-node bifurcation) points (Supplementary Fig. S4). The bifur-
cation analysis reveals that there are 10 different networks leading to 6
different complexes that show Hopf bifurcation and are capable of
Turing pattern formation.

PDE parameter sampling and dispersion analysis
Eventually, to pinpoint the specific parameter space conducive to
Turing pattern formation, we sampled 4000 diffusive parameter sets
for each of the ODE parameter sets that resulted in Hopf bifurcation
during numerical bifurcation analysis. We sampled the diffusion
coefficients so that themedian value of the distribution aligns with the
diffusion coefficients of the macromolecules inside the cell. For each
of the diffusive parameter sets we formulated a Jacobian matrix of the
dynamical system and evaluated the maximum real part of the eigen-
values for a series of wavenumbers (with a step size of Δq =0.05,
equivalent to a detection resolution of approximately 4.75 × 103 μm)
using the NumPy module in python. The graph depicting maximum
real eigenvalue against the wave number produces the dispersion
curve for the system at that specific parameter set. We can anticipate
the emergence of Turing patterns only if there is a positive real
eigenvalue at a finite wave number.

Numerical Simulation
To corroborate our dispersion analysis results (particularly to confirm
that pattern formation was not disrupted by far-away stable
equilibria66), we chose parameter sets with potentially less stiffness for
each of the 10 pathways capable of pattern formation. Subsequently,
we simulated the partial differential equations using the explicit Euler
method. Detailed information about the simulation is provided in
the Supplementary Information.

Estimation of instances of pattern-enabling complexes based on
omics data
We used databases of human protein complex and protein-protein
interactions to relate our model predicted complex configurations
that enabled Turing patterns to experimentally identified protein
associations. At the proteomic level, we used hu.MAP2.0 to enumerate
over 7000 complexes based on integrated data from large scale affi-
nity purification mass spectrometry40. Instances of model predicted
configurations were estimated based on whether each complex con-
figuration (e.g. AAB) matches a subset of protein subunits in each
complex in the dataset. Because large complexes can give rise to too

many smaller complexes combinatorially, we estimated the number of
protein subunits that are involved in each configuration via the for-
mation of any experimentally identified complex. We also confirmed
pair-wise protein associations, which provided evidence supporting
intermediate complexes leading to the final complex formation, using
STRING database with the physical interaction constraint on the
protein-protein links67. We performed functional enrichment of pro-
tein subunits involved in high-order complexes that potentially permit
pattern formation (Fig. 6a. Boxes). We used a background set of
7471 proteins in the human secretome and membrane proteome,
presumably subject to long-range transport51. We performed the
enrichment analysis for 747 proteins that were both involved in
potentially pattern-enabling complexes and in the secretome with this
background.

We estimated the instances of mRNA-microRNA complexes using
TargetScan, a microRNA target prediction package41. To avoid com-
binatorial prediction of small RNA complexes frommRNAs with many
microRNA binding sites, we estimated the number of human mRNAs
that are involved in configurations predicted by the models. For
example, AAB can represent anmRNA carrying two conserved binding
sites for the samemicroRNA. The functional enrichment of themRNAs
in potentially pattern-enabling complexes was performed with stan-
dard background.

Statistics & reproducibility
No statistical method was used to predetermine sample size. Sample
size was chosen to give sufficient resolution of parameter regions for
pattern formation. No data were excluded from the analyses. The
analyses and simulations were performed through computer pro-
grams in an unbiased manner. Investigators were therefore blinded to
allocation and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The simu-
lation data generated in this study are provided in the Source Data
files. Source data are provided with this paper.

Code availability
All code required to reproduce results in this study, including algebraic
analyses, computational work and PDE simulations, be found at
https://github.com/shibashispaul32/Turing_Reaction_Networks68. The
repository also provides links for performing example simulations
interactively without coding via VisualPDE web interface69.
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