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Summary

Reversible transitions between epithelial and mesenchymal cell states are a crucial

form of epithelial plasticity for development and disease progression. Recent experi-

mental data and mechanistic models showed multiple intermediate epithelial–

mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by

complex gene regulatory networks. In this review, we summarize recent progress in

quantifying EMT and characterizing EMT paths with computational methods and

quantitative experiments including omics-level measurements. We provide perspec-

tives on how these studies can help relating fundamental cell biology to physiological

and pathological outcomes of EMT.

K E YWORD S

fate specification process, genomics process, transcription process

1 | INTRODUCTION

Epithelial–mesenchymal transition (EMT) is a process in which epithelial

cells lose tight cell junctions and gain the ability to migrate. It has been

long known that EMT is involved in development, regeneration, and

diseases such as fibrosis and cancer (Nieto et al., 2016; Thiery

et al., 2009). For example, tumor cells can undergo EMT and become

more invasive, which contributes to metastasis (Celià-Terrassa

et al., 2018; Krebs et al., 2017). The reversal of EMT, that is, MET, was

also proposed to play critical roles in the settlement of circulating

tumor cells at metastatic sites (Ocaña et al., 2012). EMT is controlled

by an intricate network of genes whose interactions at transcriptional,

post-transcriptional, and post-translational levels enable both the tran-

sition and its dynamics. Examples of widely recognized EMT-related

genes include those coding for transcription factors such as ZEB and

SNAIL families, and effector proteins such as vimentin (Nieto, 2013). In

addition, many microRNAs, for example, miR-200 family, were shown

to play a role in EMT/MET (Cursons et al., 2018). Nonetheless, the

entire regulatory network of EMT may involve several hundred

protein-coding genes and regulatory RNAs (Tan et al., 2014).

EMT was first viewed as a binary switch from E to M. In the past

decade, however, researchers have been using interdisciplinary
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approaches to challenge the binary switch model and transforming

the concept of EMT into a system with a wide range of cell pheno-

types spanning the phenotypic space between E and M states. In par-

ticular, several groups used dynamical systems theory and models

based on core regulatory network involving a few players (ZEB1, miR-

200, etc.) to show that intermediate, partial, or hybrid EMT states can

be stable (Hong et al., 2015; Lu et al., 2013; Steinway et al., 2015;

Tian et al., 2013). The notion of intermediate EMT states is supported

by experimental data from both cell lines and in vivo samples (Grande

et al., 2015; Hong et al., 2015; Pastushenko et al., 2018; Zhang

et al., 2014). More recently, quantitative, and high-throughput data as

well as theoretical development allowed the characterization of the

trajectory of EMT involving complex state transitions. In this review,

we will highlight recent innovations in data analytical approaches and

theories for studying multistate EMT and provide perspectives for

future developments in this field.

2 | SCORING METHODS FOR THE DEGREE
OF EMT

Because EMT is now recognized as a continuous spectrum, there is a

need for scoring individual samples or cells for assessing its extent of

EMT. Expression levels of phenotypic proteins, such as E-cadherin

and Vimentin, as well as key transcription factors, have been used to

assess EMT. However, the scoring process is challenged by the diver-

sity and complexity of EMT program. As a form of dramatic pheno-

typic change, the EMT program involves coordinated regulations of

many genes, which may generate multiple stable or meta-stable cell

states. Therefore, using individual “marker” expression may produce

misleading results because the expression of a specific marker may

not be significantly altered in a partial EMT process. Tan et al. pro-

posed an EMT scoring approach based on a curated list of EMT signa-

ture genes and Kolmogorov–Smirnov (KS) tests (Tan et al., 2014)

(Figure 1a). This approach and the associated gene lists have been

widely used for assessing EMT progression. For example, Foroutan

et al. found wide score distributions for multiple cancer cell lines with

TGF-β induced gene signature (Foroutan et al., 2017). As expected, in

most cases when epithelial and mesenchymal signatures were sepa-

rately considered, cancer cells with varying degrees of EMT have

inversely correlated E and M scores. The separation of E and M

signatures also allows the identification of EMT trajectories in a two-

dimensional (2D), E and M space (EM space). For example, using time-

course bulk RNA-seq data, Panchy et al. found that TGF-β induced

EMT involves transient states at the high-E–high-M region in the EM

space (Panchy et al., 2020). The high-E–high-M states represent most,

but not all, breast cancer tumors' expression profiles that show inter-

mediate EMT phenotypes (i.e., not extreme E- or M-like).

While the KS test-based approaches are useful for assessing

degrees and trajectories of EMT, there has been a concern on the

suitability of these methods for analyzing single-cell transcriptomes

due to the efficiency and the bias toward upregulated genes (Noureen

et al., 2022). A method based on principal component analysis (PCA)

(non-negative PCA) was proposed to rapidly score EMT progression

(Panchy et al., 2021). While this method produced similar results in

terms of the EMT progression in the EM 2D space when the leading

principal component (PC) was used for gene set (E or M) scoring

(Figure 1a), it allows the investigation of gene set scores from more

than one PC ordered by the explained variance. Because it has been

shown the transcriptional program of EMT is context-dependent and

the activation of M genes can be diverse (Cook &

Vanderhyden, 2020; Watanabe et al., 2019), the advantage of the

multi-PC feature is that it can detect divergent EMT trajectories in a

single dataset. For example, in the analysis of a time course, single-cell

RNA-seq dataset for small cell lung cancer (SCLC), two PCs from a M

gene set produced comparable variances explained, and they showed

distinct sub-modules of mesenchymal-like transcriptional programs

used by different SCLC subtypes that correspond to intermediate

EMT states (Groves et al., 2022).

To simplify the assessment of partial or hybrid EMT phenotypes

in datasets, a single score for partial EMT was constructed by taking

the minimum of E and M scores (Sacchetti et al., 2021). This was

F IGURE 1 Illustration of EMT paths
and dynamical systems underpinning
EMT/MET. (a) An EMT scoring system
allows the identification of intermediate
EMT states and paths of EMT. (b) Two
regulatory networks each capable of
producing a tristable EMT system. (c–e)
Three plausible modes of EMT/MET:
signal-driven disappearance of stable
steady state (c), noise-driven transitions
among stable steady states (d), and
limit-cycle-like orbits (e).
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helpful for identifying partial EMT states during colon cancer progres-

sion (Sacchetti et al., 2021). A categorial scoring scheme based on E,

M, and E/M phenotypes was also proposed, and it was shown to be

useful for predicting survival outcomes of cancer patients (George

et al., 2017).

In addition to the scoring methods based on transcriptomic pro-

files, morphological features can be important to determine cell phe-

notypes in the EMT spectrum. For example, Wang et al. used a

scoring method based on live cell images to track trajectories of EMT,

revealing crucial temporal dynamics not captured by snapshot data

(Wang et al., 2020). In the future, connecting the morphological space

to omics' layers will be helpful to gain insights into the characteristics

of the intermediate EMT states.

3 | DYNAMICAL SYSTEMS
THEORY-BASED MECHANISTIC MODEL
STUDIES OF PARTIAL EMT

The early notion of binary switch between E and M states resulted in

confusions and controversies regarding the role of EMT in metastasis

and other pathological processes. This necessitates the rigorous

description of EMT as a dynamical system that allows the assignment

of cellular states to (stable) steady states representing the long-term

phenotypes of cells. This application of theory to biology yielded suc-

cessful insights that shed light on the complex process of EMT.

Two pioneering models provided the first theoretical frameworks

for a stable, hybrid/partial EMT state (Lu et al., 2013; Tian

et al., 2013). Both models considered networks containing transcrip-

tional regulations by key EMT factors ZEB1 and SNAIL, as well as

post-transcriptional regulations by miR-200 and miR-34. With ordi-

nary differential equation (ODE) models and bifurcation analysis, the

authors showed a gradual increase of EMT signals such as TGF-β can

trigger a two-step, sequential transition from E to M states. The par-

tial EMT state was experimentally observed by Zhang et al. (2014).

The regulatory network structures supporting the 3-state EMT sys-

tems are centered at the regulation of ZEB1, which is involved in sev-

eral feedback loops with other factors via mutual-repression or

mutual-activation circuits (Figure 1b) (Hong et al., 2015). Describing

these regulatory units with nonlinear functions (e.g., Hill functions) in

ODE models is sufficient to give rise to three stable states. For exam-

ple, we consider the ODE system

dx=dt¼ ηf y,n1,K1ð Þf z,n2,K2ð Þ�x

dy=dt¼ f x,n3,K3ð Þ�y

dz=dt¼ f x,n4,K4ð Þ� z,

ð1Þ

where f v,n,Kð Þ¼1= 1þ v=Kð Þn� �
, v represents the concentration of a

regulator, n is the Hill exponent, and K is the repression threshold.

The system describes the network shown in the yellow box of

Figure 1b, that is, x, y, and z represent the concentrations of ZEB1,

OVOL2, and miR-200, respectively. The model can produce a tristable

system with a specific choice of parameter set (Figure 1c).

However, most EMT models used more detailed descriptions for

microRNA-mediated regulations. This approach requires the separa-

tion of mRNA and protein species in the model, as well as mass-action

kinetics as opposed to nonlinear functions with explicitly sigmoidal

response curve. For example, the interactions between miR-200 and

ZEB1 mRNA harboring four miR-200 binding sites (Figure 1b, pink

box) can be described by

dR=dt¼ kR�R�4κonRrþκoffC1þβ1γC1

dr=dt¼ kr � γrþ
X4

n¼1

� 5�nð ÞκonCn�1rþnκoffCnþnαnCnð Þ

dCn=dt¼ 5�nð ÞκonCn�1r� 4�nð ÞκonCnr�nκoffCnþ nþ1ð ÞκoffCnþ1

�αnCn�nβnγCnþ nþ1ð Þβnþ1γCnþ1, n� 1,2,3,4ð Þ
ð2Þ

where R is the concentration of free ZEB1 mRNA, r is the concentra-

tion of free microRNA, and Cn is the total concentration of complexes

with microRNA molecules bound to an mRNA molecule except C0 ≔R

and C5 ≔0, kR is the transcription rate constant of ZEB1, κon and κoff

are the binding and unbinding rate constants of mRNA and microRNA,

γ is the degradation rate constant of free microRNA, and αn and βn are

the degradation rate constants of mRNA and microRNA bound to a

complex with respect to their free-form degradation rate constants.

The advantage of using this type of model is that one can relate the

mechanisms at the level of molecular interactions to the EMT cellular

phenotypes. Even more interestingly, this type of model for post-

transcriptional regulations can enable 3-state EMT systems even with-

out transcriptional regulations or explicit feedback loops (Nordick,

Park, et al., 2022). Equations (1) and (2) are typically combined to

describe both transcriptional and post-transcriptional regulations in a

single model (Hong et al., 2015; Lu et al., 2013; Tian et al., 2013), and

a recent study shows that this modeling approach can yield up to

seven stable states in the EMT spectrum (Nordick, Park, et al., 2022),

which supports the notion of an EMT continuum in the gene expres-

sion space. While the ODE-based models provide useful mechanistic

insights into the basis of hybrid EMT states, it is challenging to param-

eterize and simulate such systems when the number of variables is

large. To consider a more comprehensive EMT system, Steinway et al.

used Boolean models containing up to 69 nodes, including both tran-

scription factors and signaling proteins, to predict multiple EMT

states, including hybrid ones, in liver cancer cell lines (Steinway

et al., 2015). The team validated their predictions regarding combina-

torically activated nodes with experiments (Steinway et al., 2015). In

addition to these modeling approaches for single-cell signaling net-

works, cellular level, and multiscale (gene and cell levels) models have

also been used to characterize dynamics of EMT in terms of pheno-

typic compositions in populations containing proliferating cells at vari-

ous EMT states (Sha et al., 2020; Ta et al., 2016).

The connection between hybrid cellular states and high-order

multistability (more than two co-existing attractors) provides a theo-

retical basis for studying the complex EMT system. In this framework,

transitions among the EMT states can be driven by signals that trigger

the disappearance of certain attractors (Wang et al., 2022) (Figure 1c),
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or stochastic gene expression that permits “jumps” among co-existing

attractors (Bhatia et al., 2023; Li et al., 2016) (Figure 1d). A recent

work showed an additional type of transitions driven by limit cycle

oscillations with diverging periods (Nordick, Yu, et al., 2022)

(Figure 1e). Interestingly, this dynamical system can be produced by

microRNA-mediated regulations (Equation (2)), and it has higher

robustness of regenerating diverse gene expression patterns com-

pared with the stochasticity-driven transitions (Nordick, Yu,

et al., 2022). Future experiments will be needed to distinguish these

different modes of EMT/MET transitions in various biological

scenarios.

4 | UNRAVEL EMT TRANSITION PATHS
THROUGH SNAPSHOT CAPTURE OF CELL
STATES

To investigate how EMT proceeds, the first question is how to define

and distinguish between an epithelial and a mesenchymal phenotype

experimentally. Traditionally, one often monitors a small panel of EMT

markers, for example, a decrease of E-cadherin and an increase of

Vimentin as the epithelial and mesenchymal markers, respectively

(Zhang et al., 2014). Accumulating studies reveal that the EMT pro-

gram is context-dependent and it generally requires a large panel of

markers for the state definition (Yang et al., 2020). For example,

Taube et al. identified an EMT signature composed of downregulated

genes and 87 upregulated genes from analyzing the expression pro-

files of a panel of clowdin-low and metaplastic breast cancer lines

(Taube et al., 2010). Using a small number of EMT markers may mis-

lead interpretation of the experimental results and erroneous conclu-

sions, as exemplified in two studies (Fischer et al., 2015; Zheng

et al., 2015). The necessity of using a large panel imposes a technical

challenge of using fluorescence-labeling-based live-cell imaging

approaches for tracking individual cells over time to monitor the tran-

sition process. Advances of fixed single-cell techniques, such as vari-

ous omics approaches, provide transcriptomic, proteomic, and/or

epigenomic profiling of cell states. For these methods cells need to be

fixed thus the state of individual cells cannot be tracked over time.

Consequently, numerous computational approaches have been devel-

oped to infer the transition dynamics and transition paths from the

snapshot data, and several studies on EMT have been reported. Below

we will briefly discuss a few such studies.

Pseudotime analysis refers to a class of computational methods

of trajectory inference. To perform such analyses, one first specifies a

starting cell state and an ending cell state, then uses computational

algorithms to assign a scalar value as a metric measuring the similarity

between a given cell state and the initial state relative to that between

it and the final state. Pseudotime is therefore an unfortunate misno-

mer with no direct relation to time. It corresponds to the reaction

coordinate in chemistry, which is a one-dimensional abstract coordi-

nate quantifying the progression of a chemical reaction from a reac-

tant to a product state along a specific reaction route. Another

misnomer in the single-cell field is to term such an averaged transition

path as a trajectory, while in physics and chemistry objects follow

individual trajectories to complete a transition process.

McFaline-Figueroa et al. performed pseudotime analysis on MCF10A

scRNA-seq data and concluded that EMT proceeds through a one-

dimensional continuum (McFaline-Figueroa et al., 2019).

While pseudotime trajectories are inferred single or multiple aver-

age transition paths, several other methods aim to infer individual

single-cell transition trajectories to unravel the heterogeneity of tran-

sition processes. A Markov state transition model first clusters single

cell data into groups, and assumes that unidirectional or bidirectional

transitions can take place between neighboring groups in the cell state

space. Based on single-cell genomics data, a general method MuTrans

uses multiscale reduction of Markov model to identify attractors and

reveal multiple transition paths of EMT, as well as transitional cells in-

between (Zhou et al., 2021). One uses computational approaches to

infer the transition rates from the measured stationary or time series

cluster populations. Karacosta et al. analyzed time course mass cyto-

metry data of lung cancer cells using a Markov transition model, and

concluded similarly that both EMT and the reverse MET proceed

through distinct one-dimensional paths (Karacosta et al., 2019). Opti-

mal transport-based approaches are another class of computational

approaches that uses the cell state distributions from time series sin-

gle cell data to infer transition dynamics between different cell states.

Using optimal transport analysis, Cheng et al. examined the TGF-β

treated MCF10A cells and identified distinct paths leading to three

final cell states with different mesenchymal features (Cheng

et al., 2023). Using the method of matrix decomposition, Sha et al.

studied transition cells along the EMT trajectories based on single-cell

data as well as benchmarked the methods using agent-based EMT

models (Sha et al., 2020).

All the above approaches use the expression information only

and unavoidably impose some approximations to infer the cellular

dynamics. Different class of approaches uses additional information

for the inference. Specifically, La Manno et al. showed that one can

estimate the instant velocity of RNA copy number change termed

RNA velocities from the snapshop single-cell sequence data

(La Manno et al., 2018). The work inspired an explosive number

of studies to improve the estimation accuracy. With all these efforts

of improving the estimation of the instant RNA velocities, Qiu et al.

developed a theoretical framework, Dynamo, which addresses a sepa-

rate question of how to extract quantitative mechanistic information

from the single cell expression states and instant velocities. The

method takes (a) the discrete, sparse, and noisy single-cell gene

expression state x measured in scRNA-seq and (b) the estimated

genome-wide RNA turnover dynamics (i.e., RNA velocity dx/dt) as

input and robustly reconstructs a set of dynamical equations dx/

dt = F(x) through machine learning (Qiu et al., 2022). Contrary to

some widespread misconception, the input of Dynamo can be RNA

velocities estimated from various approaches, for example, the original

splicing-based RNA velocities or those from metabolic labeling data.

Dynamo provides a continuous and analytical vector field function F,

which quantitatively describes (generally nonlinear) gene regulation

relations in the single-cell transcriptome. That is, it is a generative
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model to provide the values of F at cell states not included in the orig-

inal data points. Therefore, Dynamo is a framework to systematically

construct a data-driven mechanistic model such as the one described

in Equation (1), but at a larger (genomewide) scale. With the vector

field F, one can make in silico predictions on the effects of gene per-

turbations. For example, the Jacobian analysis can be viewed as an in

silico experiment: for a gene i, the Jacobian reveals how changing the

expression of gene j, while keeping other genes unperturbed, affects

the transcription rate of gene i, with a positive value indicating activa-

tion and a negative value for repression. The vector field is analogous

to the force field in molecular dynamics simulations, and one can sim-

ulate how individual cells evolve over time during processes such as

differentiation and reprogramming. Using the approaches, Hu et al.

analyzed MCF10A cells treated with low-dose of TGF-β, and revealed

that EMT proceeds through either G1/S or G2/M cell cycle arrest (Hu

et al., 2023).

The work of Qiu et al. set a general framework of analyzing

single-cell data under dynamical systems theories, and inspired further

development of the detailed algorithms. Bocci et al. provide a Splice-

JAC method that approximates the gene regulation as being linear

(Bocci et al., 2022). This approximation is valid near a fixed point such

as a stable phenotype excluding cell cycle. With SpliceJAC the

researchers demonstrated that they could recover gene regulation

relations from single-cell data, and identified driver genes that regu-

late partial and full EMT. Wang et al. also developed a linearized ver-

sion of the vector field that applies for cell states away from the fixed

points (Wang et al., 2021). They first identified one-dimensional tran-

sition paths connecting the epithelial and mesenchymal regions in the

cell state space, called reaction coordinates in the context of studying

chemical reactions, using an algorithm originally developed for study-

ing chemical reactions. They constructed an approximate linear model

describing gene regulation relations and binarized the gene expres-

sions into on and off states. The directed regulations are turned on or

off by the switch of genes' on-and-off states. That is, the binarized

gene states give rise to dynamical gene regulation networks along the

transition paths. Additionally, they grouped the genes into different

communities for EMT and several other developmental processes and

found that at the stable cell type regions there are more regulations

between genes within the same community that corresponds to the

functionality of the cell type. This modular structure has been pro-

posed to be a general feature of biological networks for minimizing

interferences between different cellular processes (Norman

et al., 2013; Ravasz et al., 2002). Interestingly, along a transition path

the intercommunity regulations first increase upon moving away from

the initial cell state region and then decrease upon approaching the

final stable cell state region. This result suggests cell phenotypic tran-

sitions require transient cooperation between different cellular

programs.

Another group of methods that go beyond the pseudotime ana-

lyses use additional information one can extract from the time course

data of measured single-cell distributions in the cell state space

(Cheng et al., 2023; Schiebinger et al., 2019; Sha et al., 2024; Yeo

et al., 2021). Consider a cellular process starts with a swarm of cells

forming a cloud in the cell state space. The cell density distribution

evolves over time. Computational approaches have been developed

to learn the cell-state transition dynamics of underlying cellular pro-

cesses including gene–gene regulations and stochastic processes, as

well as death and proliferation of cells at specific cell states, from the

measured temporal evolution of cell density distributions. Specifically,

Sha et al. developed a Trajectory Inference with Growth via Optimal

transport and Neural network (TIGON) that infer cell transition

dynamics, gene regulation relations, and population growth simulta-

neously (Sha et al., 2024). They applied to EMT datasets and demon-

strated that the method recovers gene regulation relations such as

activation of SNAIL1 on mesenchymal genes. Separately, Zhang et al.

also developed a graph Dynamo formalism that describes the full

dynamics including convection from the vector field, diffusion from

stochastic processes, and cell birth-death in a multidimensional cell

state space (Zhang et al., 2023). Graph Dynamo also uses both the

temporal cell density distributions and RNA velocities to constrain

model parameters. The framework also addresses an important tech-

nical problem on how to transform the velocity vectors and the equa-

tions between different representations, for example, between

principal component space and UMAP.

5 | UNRAVEL EMT TRANSITION PATHS
THROUGH TRACING STATES OF INDIVIDUAL
LIVE CELLS OVER TIME

A fundamental limitation of the above approaches is that the dynami-

cal information is inferred from snapshot data under certain model

assumptions. Direct experimental measurements of the dynamics of

cellular state change require monitoring cells over time. Live-cell imag-

ing with fluorescently labeled proteins or mRNAs allows tracking cell

states with molecular specificity but with a limited number of molecu-

lar species to define a cell state.

Notice that cellular functions are executed through various cellu-

lar machineries, and one expects that a cell state change accompanies

with noticeable changes of morphological change of cellular structures

such as membranes and organelles. Indeed, morphological profiling

with fluorescently labeled and label-free optical imaging has been

used to characterize cell states complementing to expression profiling

methods (Way et al., 2022). For EMT studies, Burute et al. showed

that centrosome position is an indicator of EMT progression (Burute

et al., 2017). Montell described a framework of using morphological

state space to describe EMT (Montell, 2021). Amack reviewed efforts

of in vivo live cell imaging on EMT, specifically cytoskeletal reorgani-

zation (Amack, 2021). Zhao et al. reviewed efforts of using morpho-

logical features as readouts for screening drugs that can reverse EMT

(Zhao et al., 2021). Devaraj and Bose (2019) and Mandal et al. (2016)

used morphological features to define different EMT states and used

Markov transition models to infer transition dynamics between differ-

ent states from measured cell state distributions. Mandal et al. also

characterized distinct types of cell–cell connectivity during EMT

(Mandal et al., 2020). These reports demonstrate that cell
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morphological features can be used to specify cell states, particularly

in EMT studies. Notice that morphological features can be monitored

through transmission light imaging without the need of fluorescent

labeling, Wang et al. used combined fluorescent- and label-free imag-

ing to monitor individual single cells over time in a multidimensional

composite cell feature space (Wang et al., 2020; Wang et al., 2022).

The studies reveal two distinct classes of single-cell EMT trajectories,

and further studies are needed to examine whether they correspond

to the two EMT paths corresponding to G1/S and G2/M arrest from

scRNA-seq data analysis (Hu et al., 2023).

6 | PERSPECTIVE

It is widely accepted that EMT is a stepwise process with a spectrum

of intermediate phenotypes (Nieto et al., 2016; Yang et al., 2020;

Zhang et al., 2014). That is, EMT transitions may originate from differ-

ent epithelial states and end at different mesenchymal/partial mesen-

chymal states through multiple convergent and divergent paths. EMT

also couples to various other cellular processes such as metabolism

and stemness, further increasing the number of possible transition

paths. Traditionally, one pre-select a panel of markers representing

each process for subsequent analyses, and biases may be introduced

with different choices of the markers. One example is the two contro-

versial reports about the role of EMT on cancer metastasis (Fischer

et al., 2015; Zheng et al., 2015). Later studies suggest that the conclu-

sion was misled by using mesenchymal markers incapable of reflecting

partial EMT states, which turn out to contribute to metastasis. With

advances of single-cell techniques, now we are able to study how the

EMT regulatory program couples to and coordinates with other pro-

cesses systematically.

Consider the question on EMT and stemness that has attracted

extensive attention. An influential study of Weinberg and coworkers

(Mani et al., 2008) led to an explosive number of studies on the rela-

tionship between EMT and cancer stem cell generation (Scheel &

Weinberg, 2012), which is hypothesized to contribute to the complex-

ity of EMT landscape. However, mechanistic understanding on the

coupling among the processes remains unclear. While it is well estab-

lished in the EMT field that EMT proceeds through a continuum

spectrum of intermediate states, conflicting reports exist on where

cell stemness couples to the EMT axis, from coupling to the epithelial

end (Celia-Terrassa et al., 2012), the hybrid (Grosse-Wilde

et al., 2015; Kröger et al., 2019), the mesenchymal end (Mani

et al., 2008), or both epithelial and mesenchymal states (Liu

et al., 2014) (Figure 2a). One possible explanation is that coupling

between EMT and other cellular programs including stemness results

in multiple transition paths, and these paths and associated intermedi-

ate states may be populated differently at different cellular contexts

(Figure 2b). That is, one contribution to the different observations

may come from the oversimplification of using a one-dimensional

EMT axis to describe the transition progression. Several modeling

studies have analyzed small-scale EMT-stemness regulatory network

models and concluded that the partial EMT states are the most stem-

like (Jolly et al., 2014). This conclusion resonates with the observation

of Wang et al. (2021) that the crosstalk between different cellular pro-

grams transiently increases during EMT. With single-cell omics data

one can perform systematic studies on how various cellular programs

work cooperatively to execute large-scale cell expressions and func-

tion reprogramming, such as the context-dependent coupling

between EMT programs and stemness regulation programs, as exam-

pled by a few existing such studies (Acosta et al., 2013; Bocci

et al., 2021; Hari et al., 2022; Hari et al., 2023; Hu et al., 2023;

Watanabe et al., 2019).

Therefore, it is a high priority for EMT studies to have a complete

map of the EMT states and their transitions (Yang et al., 2020), or the

EMT landscape as it is referred in some literature. Advances of single-

cell techniques, including multiomics techniques, spatial genomics,

and live cell imaging studies, will provide unprecedent cellular details

at both in vivo and in vitro contexts. Analyzing the data within the

framework of dynamical systems theories, that is, data-driven systems

biology modeling (Xing, 2022), will reveal mechanisms on how the

EMT transition is regulated in a context- and microenvironment-

dependent manner, and guide effective strategies for modulating the

transitions.
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