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Simple Summary: Small cell lung cancer (SCLC) is an aggressive cancer that is difficult to treat. There
are at least five subtypes of SCLC cells, defined by gene expression signatures. The transitions between
these subtypes and cooperation between them contribute to the progression of SCLC. Particularly,
transitions between neuroendocrine (NE) states, including A, A2, and N subtypes, and the non-NE
states, including P and Y subtypes, are hallmarks of SCLC plasticity. In this study, the relationship
between SCLC subtypes and epithelial to mesenchymal transition (EMT) was analyzed. EMT is a
well-known form of cellular plasticity that contributes to cancer invasiveness and resistance. The
results showed that the SCLC-A2 subtype is epithelial while SCLC-A and SCLC-N are mesenchymal
but distinct from the non-NE mesenchymal states. This study provides a basis for understanding the
gene regulatory mechanisms of SCLC tumor plasticity and its applicability to other cancer types.

Abstract: Small cell lung cancer (SCLC) is an aggressive cancer recalcitrant to treatment, arising
predominantly from epithelial pulmonary neuroendocrine (NE) cells. Intratumor heterogeneity
plays critical roles in SCLC disease progression, metastasis, and treatment resistance. At least
five transcriptional SCLC NE and non-NE cell subtypes were recently defined by gene expression
signatures. Transition from NE to non-NE cell states and cooperation between subtypes within a
tumor likely contribute to SCLC progression by mechanisms of adaptation to perturbations. Therefore,
gene regulatory programs distinguishing SCLC subtypes or promoting transitions are of great interest.
Here, we systematically analyze the relationship between SCLC NE/non-NE transition and epithelial
to mesenchymal transition (EMT)—a well-studied cellular process contributing to cancer invasiveness
and resistance—using multiple transcriptome datasets from SCLC mouse tumor models, human
cancer cell lines, and tumor samples. The NE SCLC-A2 subtype maps to the epithelial state. In
contrast, SCLC-A and SCLC-N (NE) map to a partial mesenchymal state (M1) that is distinct from the
non-NE, partial mesenchymal state (M2). The correspondence between SCLC subtypes and the EMT
program paves the way for further work to understand gene regulatory mechanisms of SCLC tumor
plasticity with applicability to other cancer types.

Keywords: small cell lung cancer; epithelial–mesenchymal transition; cellular plasticity; single-cell
RNA-sequencing
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1. Introduction

Small cell lung cancer (SCLC) is one of the most aggressive human cancers, charac-
terized by early metastasis and acquisition of therapeutic resistance [1]. SCLC tumors are
neuroendocrine (NE) tumors that arise in the lung epithelium, and pulmonary NE cells
(PNEC) are considered their normal counterparts [2,3]. However, multiple reports have
demonstrated considerable intratumoral heterogeneity in SCLC [4–9]. There is accumulat-
ing evidence that SCLC NE cells can transition into non-NE states [5,8,10]. Furthermore,
prior studies suggest cooperative interactions occur between NE and non-NE cells during
SCLC tumor progression [4,11,12]. An open question is whether transitions from NE to
non-NE subtypes, and possibly vice versa, are driven by intrinsic factors (e.g., transcription
factor network dynamics [7]), extrinsic factors (i.e., microenvironmental influences, such as
hypoxia or therapeutic agents) [9,13], or a combination of both.

A standard to classify SCLC cells based on expression levels of four key transcription
factors (TFs), ASCL1, NEUROD1, YAP1, and POU2F3, was recently adopted [14,15]. Based on
the most abundantly expressed TF, or an underlying signature, three NE (A, A2, and N) and
two non-NE (Y and P) subtypes have been proposed [7,16]. An additional subtype enriched
in inflammatory genes, SCLC-I, has also been described [9]. However, the gene regulatory
mechanisms that generate and maintain the molecular and phenotypic identities of SCLC
subtypes remain unclear. Of particular interest are mechanisms underlying NE to non-NE
phenotypic transitions since they may directly contribute to tumor progression [5,10,17,18].
Because PNECs and SCLC cells are of epithelial origin (endodermally derived) [19] and
SCLC tumors are highly metastatic, we hypothesize that similarities may exist between
NE/non-NE transitions and the well-studied epithelial–mesenchymal transition (EMT). EMT
is a cellular process in which epithelial cells lose tight cell-junction and gain the ability to
migrate, characteristic features of metastatic spread [20]. EMT also contributes to tumor
drug resistance [21–23], and EMT transition has been associated with drug resistance in
human SCLC tumors [8,24]. Theoretical and experimental studies have revealed that EMT is a
multi-stage process, and the transcriptional programs (e.g., subsets of mesenchymal signature
genes) activated in different contexts can be diverse [25–33]. For example, different EMT
stimulants can activate diverse transcriptional programs [26]. Thus, while multiple reports
have suggested a role of EMT in SCLC phenotypic plasticity, drug resistance, and metastasis,
to the best of our knowledge, a systematic analysis of the relationships between NE and
non-NE SCLC subtypes and EMT has not been previously reported.

In this paper, we use accepted scoring metrics for epithelial (E) and mesenchymal (M)
programs to position NE and non-NE SCLC subtypes within the EMT spectrum. We find
that the A2 subtype is strongly epithelial-like (scores high along the E axis) and weakly
mesenchymal-like (scores low along the M axis), supporting it as the most E-like subtype
of SCLC. In contrast, the non-NE subtypes (P and Y) score higher on the M axis, while
being lowest along the E axis. Surprisingly, the NE subtypes A and N consistently score
significantly lower than A2 along the E axis. Moreover, transcripts of some mesenchymal
genes, such as ZEB1, are more abundant in N than in non-NE subtypes, suggesting the
existence of distinct mesenchymal gene programs across SCLC subtypes. These findings
support the involvement of EMT programs in SCLC phenotypic heterogeneity and provide
potential mechanistic insights into NE/non-NE transitions.

2. Methods
2.1. RNA-Sequencing Data

We obtained and batch-corrected bulk RNA sequencing expression data on SCLC cell
lines from the Cancer Cell Line Encyclopedia (50) and cBioPortal (70) [34]. Preprocessing of
this data was described by Groves et al. [16].

Single-cell RNA sequencing data were downloaded from Gene Expression Omnibus
(GEO) at GSE193959 (human cell lines), GSE149180 (RPM mouse tumor time course), and
GSE138474 (human CDX tumor samples) [9,10,16]. Preprocessed human tumor data were
downloaded from the Human Tumor Atlas Network deposited by Chan et al. [35] at
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Synapse ID syn23630203. Human cell line and RPM mouse tumor datasets were prepro-
cessed as described by Groves et al. [16], including filtering and normalization of total
counts using the Python package Scanpy [36], log-transformation using the log1p function
from the Numpy package, and scaling using Scanpy. Log-normalized expression levels were
used for comparisons (Mann–Whitney U test) between subtypes.

Human CDX data were preprocessed as described by Gay et al. [9]. Briefly, cells
were filtered as described [9] to remove non-tumor cells. SC53 tumors (before and after
cisplatin treatment) were concatenated together, and SC68 tumors were concatenated
together. For each dataset (SC53 and SC68), Scanpy was used: total counts were normalized
by cell, then data were log transformed (log1p). Highly variable genes were determined
with min_mean = 0.0125, max_mean = 5, and min_dsip = 0.8. A PCA, tSNE, and Leiden
clustering were then calculated using Scanpy.

2.2. Subtyping of SCLC Cells

Single cell subtype labeling was done as described by Groves et al. [16]. Briefly, after
archetype analysis was applied to the MAGIC-imputed single cell datasets and vertices
were identified [37,38], we labeled the cells closest to each archetype as that subtype if
the archetype score was >0.95 (each cell received weighted archetype scores that sum
to 1). SCLC archetypal signatures were generated from bulk human cell line and tumor
transcriptomics data, giving a matrix of 105 genes by 5 archetypes (SCLC-A, SCLC-A2,
SCLC-N, SCLC-P, and SCLC-Y). In order to align the single-cell archetypes with our bulk
archetype signatures, we consider the scores for each cell described in the STAR Methods
section “Bulk gene signature scoring of single cells using archetype signature matrix” from
the study by Groves et al. [16]. For each bulk signature x and for each single-cell archetype
a, we ran the following significance test:

(1) Find the mean bulk score x for a specialist, m.
(2) Choose a random sample of size na, where na is the number of specialists, with

replacement from the remaining cells (i.e., cells that are not specialists, including
generalists and other specialist cells). Find the mean bulk score for this sample. N.B.
Because some time points have very few cells, we sample evenly from each time point
to ensure adequate representation across the time points.

(3) Repeat this random selection 1000 times.
(4) Generate a p-value, which is equal to the percentage of means from this random

distribution above m.
(5) Using statsmodels.states.multitest, correct p-values for multiple tests. We used the Bon

ferroni–Holm method to control the family-wise error rate. Consider q < 0.1 significant.

Therefore, each archetype was labeled with an SCLC subtype if enriched in that
subtype’s signature. For this work, we considered only the cells labeled with such a
subtype (i.e., specialists). For the RPM tumor cells, six archetypes were originally found
in the study by Groves et al. [16] (A/N, A2, P/Y, two Y groups, and one archetype not
enriched in any signatures). Here, we consider those enriched in SCLC subtype signatures,
combining the two Y groups resulting in A/N, A2, P/Y, and Y.

2.3. Single Sample Gene Set Enrichment Analysis (ssGSEA)

ssGSEA was performed to compute the enrichment scores for individual cells (for
scRNA-seq data) or individual cell lines (for bulk RNA-seq data) [39,40]. A list of 232 epithe-
lial signature genes and a list of 193 mesenchymal signature genes were used to compute
the E enrichment score (E score) and M enrichment score (M score), respectively [41,42].
The combined list of 425 EMT genes has 20 genes that also appear in the 105 signature
genes used for SCLC subtyping. To ensure that the inferred relationship between EMT
scoring and SCLC subtyping was not simply due to the shared list of genes, we excluded
the intersection of the two gene sets and performed additional ssGSEA scoring for each
dataset. The patterns of the scoring were not altered by the exclusion.
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2.4. Non-Negative Principal Component Analysis (nnPCA)

To quantify the divergent progression of EMT across the subtypes of SCLC cells, we
used a second approach to compute the E and M scores. We performed nnPCA using the
gene sets mentioned above [41,43]. nnPCA determines the approximate orthogonal axes
with non-negative coefficients (loadings) for features (genes). Variances of projections of
data points (cell or cell lines) onto these axes are maximized via an optimization method [44].
In brief, the vectors of weights, w, used to define the first principal component of PCA is
defined such that it maximizes the variance of the first component, i.e.,

arg maxw wTCw (1)

where C is the covariance matrix of the original data set X and w is unit vector (||w||2 = 1).
In our case, X is an m by n matrix of expression values where m is the number of samples
and n is the number of genes in the selected gene set. This method for determining w can
be treated as an expectation maximization problem where the original data is projected
using the current estimate of w (y = Xwt) and this projection is used to re-estimate w using
the following minimization step:

wt+1 = arg minw

N

∑
n=1
||xn − ynw||22 (2)

where xn are the rows of the original data and yn are the rows of the projected data [44].
This expectation-maximization formulation allows additional constraints on w, including
forcing the component values to be non-negative. Note that the non-negativity constraint
applies only to the weight components such that negative scores can still exist if there are
negative values in underlying data, such as those produced by centering expression data
to zero which we did for all nnPCA inputs. Subsequent components are calculated in the
same way, under the constraint that they are orthogonal to the preceding ones.

To select the principal components (PCs) that best represent the EMT programs across
SCLC subtypes, we used two criteria to rank the PCs in a semi-supervised manner. We first
selected the top five PCs that have the highest variances explained for individual samples
(cells or cell lines). Among the five PCs, we re-rank them based on the variances of means
of individual SCLC subtypes. Similar to ssGSEA, we excluded the EMT gene set and the
SCLC gene set and performed additional nnPCA scoring for each dataset. The ranks of the
PCs and the patterns of the nnPCA were not altered by the exclusion.

3. Results
3.1. The SCLC-A2 Subtype Is Highly Enriched in Epithelial Gene Expression

We first analyzed a time course of single-cell RNA-sequencing (scRNA-seq) dataset
from an SCLC genetically engineered mouse model (GEMM) with an overactive Myc onco-
gene (Rb1fl/fl; Trp53fl/fl; Lox-Stop-Lox [LSL]-MycT58A, RPM) [10]. The 15,138 single cells were
annotated with the SCLC subtypes using gene expression signatures and archetype analysis,
as recently described [16]. An SCLC signature comprising 105 genes that distinguishes the
five SCLC subtypes was used to classify individual cells relative to extreme expression pat-
terns of NE and non-NE subtypes, with some subpopulations enriched in multiple subtype
signatures, resulting in four classes (A/N, A2, P/Y, and Y) (see Section 2) [16]. In parallel,
using normalized gene expression, we computed the epithelial (E) and mesenchymal (M)
scores for this dataset. The scores were computed using single-sample gene set enrichment
analysis (ssGSEA) with a list of 232 epithelial (E) associated genes and 193 mesenchymal
(M) associated genes (see Section 2) [39,40,42]. In the EMT spectrum depicted by the E and
M scores, we observed a striking difference between the position of the NE A2 subtype
and other NE and non-NE subtypes (Figure 1A). The A2 cells had a significantly higher
E score and a significantly lower M score compared to other subtypes (p < 10−5 for each
comparison). Consistent with the E/M scores, we found that A2 cells had significantly
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higher levels of Cdh1 (coding E-cadherin) (p < 10−5), a widely used E marker gene crucial
for cell adhesion, compared to other cells (Figure 1A inset). These results indicate that gene
expression in the A2 subtype is most restricted to an epithelial phenotype, whereas, in all
other SCLC subtypes (NE and non-NE), M gene expression appears to be permitted to
various extents.
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Figure 1. Distributions of SCLC cells across the epithelial and mesenchymal spectrum. E and M scores
of (A) 15,138 mouse Myc-overexpressing SCLC GEMM tumor cells in an ex vivo model; (B) 120 SCLC
cell lines; and (C) 13,945 cells from eight SCLC cell lines. Scores were computed with ssGSEA and
425 previously identified EMT genes. Circles and black bars indicate means and standard deviations.
Inset in A shows normalized expression of Cdh1 in four classes of cells.

We next asked whether the association between the A2 subtype and the epithelial
lineage in RPM mouse SCLC tumor cells extends to human SCLC cells. We first analyzed
bulk RNA-seq data from 120 human SCLC cell lines assigned with subtype identities (see
Section 2). Several A2 cell lines (e.g., DMS53) were located in the extreme E position on the
EMT spectrum (Figure 1B), in agreement with A2 cells from RPM tumors (Figure 1A). As
a group, A2 cell lines had the highest mean E score and the lowest M score among SCLC
subtypes, although these scores were closer to A and Y cells than in the RPM tumor cell
data (Figure 1B). This partial overlap could be due to cell–cell heterogeneity within cell
lines that is not resolved in bulk RNA-seq data. Therefore, we visualized 13,945 single-
cell transcriptomes from eight human SCLC cell lines [16] with the same E/M projection
method. In this dataset, A2 cells are more distinct from other subtypes than in the bulk
RNA-seq data, and the separation is more similar to the RPM tumor cell data (Figure 1C).
Interestingly, in both bulk and single-cell RNA-seq datasets for SCLC cell lines, the NE
subtype A has an intermediate EMT expression profile (Figure 1B,C).

The strong association between SCLC subtypes and EMT progression raises the ques-
tion of whether this connection is trivial due to a sharing of genes between the 105 SCLC
subtype signature gene set and the 425 EMT signature gene set. However, there are only
20 genes appearing in both gene sets, indicating limited overlap (Jaccard index 0.039).
Furthermore, excluding the 20 overlapping SCLC signature genes from the EMT gene set
had minimal effect on the distributions of SCLC cells in the EMT spectrum in each of the
three datasets (Figure S1). Taken together, our analyses indicate a strong and nontrivial
association between SCLC subtypes and EMT progression. In particular, a specific SCLC
NE subtype, A2, exhibits phenotypes associated with highly restricted epithelial lineages
in mammals.

3.2. Mesenchymal Scoring Is Diverse across Non-A2 Subtypes

The ssGSEA-based E/M scoring did not show any dramatic difference among A,
N, P, and Y (i.e., non-A2) subtypes (Figure 1). However, the expression of individual M
genes, such as Vim, differed significantly among non-A2 subtypes (Figure 2A,B). This
suggests the possibility that M genes have divergent expression patterns across the SCLC
subtypes, which may mask the ssGSEA-based scoring. Recent studies in tumors and cell
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lines also suggested diversity of EMT programs [25,26,45]. For example, activation of a
subset of M genes depends on EMT transcription factor ZEB1, while that of other M genes
are activated via ZEB1-independent pathways [25]. To determine potentially distinct M
programs in SCLC cells, we used an alternative scoring method based on nonnegative
principal component analysis (nnPCA), which generates leading PCs that describe the
variance for each gene set (see Section 2). With the single-cell data from both the mouse
RPM model and the SCLC cell lines, we noticed that the first PC for M scores explained
less variance compared to the first PC for E scores (Figure 2C,D top). Furthermore, the first
two M PCs produced comparable variances explained. These results indicate that M gene
expression is spread evenly over at least two orthogonal dimensions, suggesting diversity
of M scoring and warranting further investigation. Interestingly, M scores obtained from
the first and second PCs ranked the SCLC subtypes differently: A/N subtypes have higher
scores than Y subtype cells based on the first M PC (nnPC1) but lower scores than Y subtype
with the second M PC (nnPC2) (Figure 2C,D scatter plots). In fact, two representative M
genes—Vim (the gene encoding vimentin, an intermediate filament protein component of
mesenchymal cell cytoskeletons) and Zeb1 (a widely studied EMT transcription factor)—
had an anticorrelated pattern between A/N and Y subtypes in the RPM dataset (compare
Figure 2E to Figure 2A) [46,47]. Although this anticorrelation was less prominent in the
cell line data (compare Figure 2F to Figure 2B), distinct Vim and Zeb1 expressions of SCLC
subtypes were observed.
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in 13,945 cells from eight SCLC cell lines (B). Imputed data were plotted in B for visual aid. Circles
and black bars show means and standard deviations of SCLC subtypes. (C,D) Line plots: nnPCA was
performed. Plots show standard deviations of SCLC subtype means for mouse and human SCLC cells
from the top 5 PCs. Scatter plots: nnPCA-based E and M scores. (E,F) Normalized expression levels of
Zeb1 (M gene) and Cdh1 (E gene) in 15,138 mouse Myc-driven tumor cells (E) and in 13,945 cells from
8 SCLC cell lines (F). Imputed data were plotted in F for visual aid. (G) Mean differences between N
cells (A/N cells for mouse) and Y cells in individual M gene’s expression in mouse and human SCLC
cells. (H) A heatmap showing the diversity of M gene expression across N (A/N) and Y subtypes.

Overall, like the case of Vim and Zeb1, the mean differences in expression of M genes
between A/N subtypes and Y subtype were diverse, and these differences were positively
correlated between the RPM data and the cell line data (Figure 2G, Pearson correlation
coefficient 0.29, p < 10−5). Some M genes, such as Zeb1, had higher expression in the
A/N subtypes than in the Y subtype, while some others, such as Vim, had the opposite
pattern (Figure 2G,H). We defined these two groups of M genes as M1 and M2, respectively
(FDR < 0.05 for N-Y differences). We performed gene ontology analysis and found that,
while 20 enriched biological processes were shared between the two groups, M1 genes
were uniquely enriched in more than 200 processes including ‘negative regulation of cell
adhesion involved in substrate-bound cell migration’ (fold enrichment > 100, FDR = 0.005),
whereas M2 were uniquely enriched in 11 processes including ‘extracellular matrix orga-
nization’ (fold enrichment = 14.08, FDR = 0.02) (Tables S1 and S2). As these two groups
of processes may both contribute to enhanced cell motility, this result suggests that NE
and non-NE subtypes may use distinct strategies to achieve mesenchymal-like cellular
functions such as cell migration. In summary, our result supports the functional divergence
of the M genes differentially expressed in NE and non-NE SCLC subtypes.

3.3. The Highly Epithelial A2 Subtype and Diverse M Gene Expression Patterns Are Detectable in
Human SCLC Tumor

The distinction between the A2 and A subtypes has generally not been considered in
previous studies by other investigators. For example, Chan et al. profiled 54,523 individual
SCLC cells from 19 human samples and classified them into A, N, and P subtypes (note
the absence of the Y subtype) [35]. We therefore asked whether our analytical framework
can be used to discover previously unknown, extremely epithelial-like cells in this human
SCLC tumor dataset. We first performed E and M scoring for this dataset (Figure 3A) and
found that A cells (as subtyped in Chan et al. [35]) fell into two distinct groups, one of
which was highly E-like (Figure 3B, red arrow). We hypothesized that the cells labeled
as A subtype by Chan et al. include both extreme E-like (A2) and EMT-intermediate-like
(A) subtypes. We re-subtyped the SCLC cells from Chan et al. using our subtype gene
signatures (see Section 2), and we found a significant fraction of the previously labeled A
cells had high scores for the A2 subtype and low scores for the A subtype, which we labeled
A2* (Figures 3C,D and S2). In particular, the distinct group of E-like cells corresponds
to the group of cells that had high A2 scores and low A scores (Figures 3C,D and S2).
Interestingly, the cell cluster with high A2 scores corresponds to a unique tumor sample
(Figure 3A, pink) with a unique treatment type (Figure S3). We found that the A2 scores of
these 11,056 A2-enriched SCLC cells were strongly positively correlated with their E scores
(nnPCA performed with RU1108 cells alone) (Figure 3E) (Spearman correlation coefficient
sr = 0.69). In contrast, A scores were negatively correlated with E scores in these cells
(Figure 3E) (sr = −0.23). In addition, A2 scores had a moderately negative correlation with
M scores (nnPCA) (sr = −0.17) (Figure 3F).
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Figure 3. Detection of epithelial- and mesenchymal-like SCLC subtypes in human tumor cells.
(A) Scatter plot shows nnPCA-based E and M scores for 54,523 SCLC cells [35]. Color code represents
each of the 19 patients. Circles and black bars show means and standard deviations of cell scores for
each patient. (B) Same data as in A with SCLC subtype labels obtained from Chan et al. [35]. Circles
and black bars show means and standard deviations of scores across the previously determined
SCLC subtypes. (C,D) Scatter plots show A2 and A subtype scores in the previously determined
SCLC-A subtype cells from the data in B. (E,F) Transcriptome data of 11,056 SCLC cells from tumor
RU1108 of the Chan et al. study [35] were projected onto indicated score axes. Linear regression lines
and confidence intervals were obtained for all cells and ASCL1+ cells. sr is Spearman correlation
coefficient. (G) Normalized expression of ZEB1 and VIM in the same dataset as in A. Color code
represents each of the 19 patients as in A. (H) The same data as in G but color labels are defined by
SCLC subtype shown in B.

Systematic analysis for divergent M programs could not be performed due to the
absence of any Y subtype cells in the dataset. Nonetheless, heterogeneous expressions of M
genes ZEB1 and VIM were observed within the N subtype (Figure 3G). Furthermore, three
M-like cell clusters with similar E and M score rankings (Figure 3A, red, dark green, and
brown) had dramatically different profiles of VIM and ZEB1 expression (Figure 3G) even
though all were classified as N (Figure 3H). These results further support the association
between SCLC and EMT programs and reveal a previously underappreciated connection
between SCLC tumor cell heterogeneity and EMT.

3.4. Intratumor Heterogeneity of SCLC Indicates Strong A2–Epithelial Association at
Single-Cell Level

The A2–epithelial (A2–E) association in human tumors described in the previous
section relies on gene set analyses across multiple tumors, where all cells within each tumor
were classified into a single subtype [35] (Figure 3A–D). We next analyzed a scRNA-seq
dataset of two human SCLC circulating tumor cell-derived xenografts (CDXs) [9], each
of which underwent an EMT-like cell state transition upon cisplatin treatment such that
multiple subtypes exist within individual tumors. We first performed subtyping analysis
and computed scores of five SCLC subtypes for 5268 cells (untreated and cisplatin-treated)
of tumor SC53. We visualized the SCLC scores in the E–M space obtained from nnPCA
(Figure 4A) and found that while there was a distinct, small population corresponding to an
M-like state as previously reported [9], most tumor cells were located in a continuous region
with relatively high A2 and A scores (Figure 4A), consistent with their positivity for ASCL1
as previously shown. Furthermore, N and P subtypes seem to be absent from this tumor
(Figure 4A). Interestingly, although both A and A2 scores were positively correlated with
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E scores for all cells in the tumor (sr = 0.43 for A2; sr = 0.09 for A), only A2 scores had a
strong correlation with E scores for cells that express ASCL1 (Figure 4B,C) (sr = 0.35 for A2;
sr = −0.08 for A). In addition, neither the SC53 tumor cells nor its ASCL1+ subpopulation
showed a strong correlation between A2 scores and M scores (Figure 4D).
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Figure 4. Correlations between A2 and epithelial transcriptional programs in individual human
tumor cells. (A) A total of 5268 single-cell transcriptomes from SCLC tumor SC53 [9] were projected
onto the E and M score axes using nnPCA. Colors indicate SCLC subtype scores (see Section 2).
(B–D) Linear regression lines and confidence intervals were obtained for all cells and ASCL1+ cells
from data in D. (E) Datasets of three tumors (top labels) were used to compute the Spearman
correlation coefficients between SCLC subtype scores (left labels) and E scores from nnPCA or CDH1
expression levels. All cells and ASCL1+ cells were analyzed separately. (F) Correlations between A2
scores and E scores (nnPCA) in untreated and cisplatin-treated cells of SC53 tumor. (G) Datasets of
SC53 and SC68 tumors were used to compute the Spearman correlation coefficients between SCLC
subtype scores (left labels) and E scores from nnPCA or CDH1 expression levels. All cells and ASCL1+

cells were analyzed separately. Untreated and cisplatin-treated cells were analyzed separately.

We next extended our analysis to SC68, another tumor that underwent an EMT-like
transition upon cisplatin treatment [9]. Similar to SC53, there was a strong positive correla-
tion between A2 and E scores both in all cells in the tumor and in ASCL1+ cells, whereas the
correlations between other subtypes’ scores and E scores were either significantly weaker or
negative (Figure 4E). We also found that the strong A2–E association was partly explained
by a positive correlation between A2 scores and the expression of CDH1 (Figure 4E). Again,
the A2–E association was not due to shared genes between the two gene sets that we
used for scoring (Figure S4). Together, our results show that the intratumor association
between A2 and E transcriptional programs is a consensus pattern across RU1108, SC53,
and SC68 tumors.

We next asked whether the A2–E correlation in SC53 was driven by cisplatin treatment
or intrinsic cell-to-cell heterogeneity. We found that cisplatin-treated ASCL1+ cells showed
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both greater variance in the E–M space and stronger correlation between A2 and E scores
compared to untreated cells (Figure 4F) (sr = 0.31 for untreated cells; sr = 0.42 for treated
cells). Nonetheless, even in the untreated cells, a positive correlation between A2 and E
scores was observed (Figure 4G). Therefore, this A2–E association was found across all
cells of both tumors before and after treatment (Figure 4G). These results excluded the
possibility that the observed A2–E association was due to Simpson’s paradox in which the
treatment condition may be a hidden variable. Instead, they suggest that both cisplatin
treatment and intrinsic cell-to-cell heterogeneity contribute to the A2–E correlation and
that treatment can induce a cell state transition towards an M-like state without turning off
ASCL1 transcription.

4. Discussion

Understanding the molecular basis for tumor heterogeneity is crucial for developing
next-generation therapeutic strategies [48–51]. Recent advances in defining subtypes of
SCLC tumors provide such potential [9], but cellular and molecular mechanisms contribut-
ing to phenotypic heterogeneity are still unclear. Interestingly, SCLC tumors have both
NE and epithelial characteristics [52]. We therefore asked whether SCLC cells hijack EMT,
canonically defined as a developmental program [53], to increase invasiveness and drug
resistance, which has been shown to occur in other cancer types [22,23].

While it was shown that some genes promoting EMT are activated in NE/non-NE
transitions of SCLC [10,16,54], connections between SCLC subtypes to the EMT spectrum
have not been studied in depth. It is also unclear whether SCLC involves multiple (unique)
partial EMT states. Through analysis of transcriptome datasets from multiple sources
including a mouse tumor model, human cell lines, and human tumor samples, our work
reveals a strong correspondence between the EMT spectrum, containing an epithelial state
and several divergent mesenchymal states, and recently defined SCLC subtypes. Our study
indicates the partial EMT status of the NE subtypes A and N, whereas the NE subtype A2
is fully epithelial-like. In addition, we show divergence of mesenchymal gene expression
in N (an NE) and Y (a non-NE) subtypes.

Our analysis shows diverse expressions of mesenchymal factors across SCLC subtypes.
This is consistent with recent observations showing EMT is a context-specific dynamic
process [26]. Interestingly, the EMT transcription factor ZEB1 and EMT effector gene
VIM have an anti-correlated expression pattern between N and Y subtypes. Although the
contribution of ZEB1 to EMT was demonstrated in vivo and in vitro [25,55–57], its high
expression may not be required for some partial EMT states. Our previous work showed
that expressions of some mesenchymal genes do not require ZEB1 activation and that the
high expression of a group of EMT genes positively controlled by ZEB1, but not TGF-β, is
correlated with better prognosis of breast cancer patients [25]. It is possible that ZEB1 is
transiently required for maintaining a group of NE cells during SCLC progression, and the
transitions to more drug-resistant subtypes may require the down-regulation of ZEB1.

This work builds on our prior studies that suggested the partial EMT status of N,
based on mixed morphological features and expression of ZEB1, SNAI1, and TWIST1 but
not VIM [16]. Here, we expand this work by analyzing EMT-related gene signatures in this
subtype across multiple datasets. While SCLC-N is canonically defined by expression of
NEUROD1, characterizing this subtype as a partial-EMT state may lead to new insights
regarding its functional role in SCLC tumor progression and metastasis. Further work is
needed to understand how enrichment of a mesenchymal signature (M1) in this subtype is
related to this partial-EMT characterization.

The heterogeneity of NE and non-NE SCLC subtypes has been observed previously.
However, the factors driving transitions between NE and non-NE subtypes are not well
characterized. It has long been known that EMT is reversible in both embryonic and
postnatal development, and this reversible process can also be triggered in cancer cell lines
using either dynamic extracellular signals (e.g., TGF-β) or forced expression of intracellular
factors (e.g., TFs or microRNAs) [25,29,58,59]. In addition, oscillations arising from gene
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regulatory networks of EMT can facilitate reversible cell state transitions [60]. Our findings
suggest that the machinery for reversible EMT may also be responsible for the transitions
between NE and non-NE cells during the progression of SCLC. Future work is warranted to
determine the temporal sequence of activation among EMT TFs, signaling molecules, and
subtype-defining factors for SCLC, such that the intrinsic and extrinsic factors contributing
to the NE/non-NE transition can be dissected. Overall, by revealing the relationships
between NE/non-NE subtypes and EMT progressions, this study will help guide future
work to improve our understanding of SCLC tumor heterogeneity and cell state transitions
that may be driven by EMT programs.

5. Conclusions

Our analysis of multiple transcriptome datasets, including single-cell data from human
and mouse SCLC tumors, consistently showed that an extreme epithelial state corresponds
to the SCLC-A2 subtype, whereas two NE subtypes, SCLC-A and SCLC-N, have significant
expression of a subset of mesenchymal genes, with surprisingly limited overlap with the
mesenchymal genes highly expressed in non-NE cells. Our work reveals a previously
unknown connection between an EMT program and a specific SCLC subtype and an
underappreciated divergence of EMT trajectories contributing to the SCLC phenotypic
heterogeneity. These results shed light into molecular systems’ mechanisms underlying
plasticity and progression of SCLC.
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//www.mdpi.com/article/10.3390/cancers15051477/s1, Figure S1. Distributions of SCLC cells across
the epithelial and mesenchymal spectrum using non-overlapping gene sets. Figure S2. Subtype
scores for human tumor cells. Figure S3. Treatments of human tumor cells visualized in EMT space.
Figure S4. Correlations between A2 and epithelial transcriptional programs in individual human
tumor cells using non-overlapping gene sets. Table S1. List of Gene Ontology terms of M1 genes.
Table S2. List of Gene Ontology terms of M2 genes.
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