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Abstract: Colorectal cancer has proven to be difficult to treat as it is the second leading cause of cancer
death for both men and women worldwide. Recent work has shown the importance of microRNA
(miRNA) in the progression and metastasis of colorectal cancer. Here, we develop a metric based
on miRNA-gene target interactions, previously validated to be associated with colorectal cancer.
We use this metric with a regularized Cox model to produce a small set of top-performing genes
related to colon cancer. We show that using the miRNA metric and a Cox model led to a meaningful
improvement in colon cancer survival prediction and correct patient risk stratification. We show that
our approach outperforms existing methods and that the top genes identified by our process are
implicated in NOTCH3 signaling and general metabolism pathways, which are essential to colon
cancer progression.
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1. Introduction

Colorectal cancer (CRC) is estimated to develop in 945,000 patients worldwide yearly,
with approximately 492,000 dying from the disease. Its complexity leads to challenges with
interpreting the relationship between the many inputs of classical statistical models and
their outputs related to large datasets. Current work in predicting the prognosis of CRC,
using gene expression data, has focused on identifying novel biomarkers to predict survival
and treatment outcomes through differential gene expression [1,2]. These approaches have
been developed to work with next-generation bulk RNA sequencing (RNA-seq) [3–5],
a technique that only generates the averages of gene expression across cells. Models
that prioritize marker genes, based on bulk RNA-seq, are, therefore, unable to describe
and utilize widely observed cancer cell heterogeneity for prognostic predictions [6–8].
In addition to the limitation in data, many prognostic models for colorectal cancer use
unregularized Cox models to perform survival analysis. This can lead to issues with
overfitting to training data and challenges with including additional inputs to a model.

Controlling gene expression at the post-transcriptional level is not only crucial for
cancer progression, but also potentially useful for developing anticancer therapeutics.
MicroRNAs (miRNAs) are small (22 nts), post-transcriptional regulators of messenger RNA.
They have been studied in various systems and have recently been found to play essential
roles in cancer regulation and progression [9–12]. While there are a variety of approaches to
identifying biomarkers across different cancers, it remains challenging to integrate miRNA
target information with RNA-sequencing data, primarily containing mRNA transcripts for
prognostic predictions of CRC.

In this work, we use advances in single-cell RNA sequencing (scRNA-seq) and miRNA
targeting to improve the prediction of survival outcomes for CRC patients. We develop an
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integrated gene prioritization method that combines miRNA–mRNA binding and target
expression data (Figure 1). We show that using miRNAs and scRNA-seq provides better a
predictive performance than other methods. Additionally, our method determined markers
that have previously been found to be associated with other types of cancer. Finally, we
show that our method can be used on other large cancer datasets to potentially find novel
biomarkers and improve survival prediction accuracy.

Figure 1. Overall Design of CCsc. CCsc is composed of 5 steps. (1) Obtaining pre-processed scRNA-
seq matrix (genes by cells) and performing imputation and denoising via the MAGIC package and
then filtering for low abundance samples. (2) Using filtered, denoised, and imputed scRNA-seq
matrix to perform metric dependent pre-processing steps. (A) For the SDE metric this involves
ordering the scRNA-seq matrix by pseudotime based on the expression of the VIM marker. (B) For
the miRNA metric, this involves sending the matrix to our novel miRNA metric. (C) We calculate
the MAD metric from the scRNA-seq matrix. (3) In this step, we generate a distinct gene list from
each of our three metrics. (4) We integrated and merged the three separate gene lists into a single
master list based on their score. From this master list, we then send N number of genes from the list
as inputs to a LASSO penalized Cox model. The metric weights (a1, a2 and a3) are optimized via a
grid search that involves the next step. (5) This step yields the outputs of our penalized Cox model
that uses concordance index to assess our model’s accuracy. We also generate Kaplan–Meier survival
curves, based on the model output, to further validate the efficacy of the genes selected by our model.
Based on the Cox model outputs, we can optimize the gene weights of our linear model to achieve
the best performance.
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2. Materials and Methods
2.1. Model Overview

The general pipeline that we develop in this study is called Colon Cancer Single-cell
(CCsc). CCsc aims to prioritize genes for the input of a LASSO penalized Cox model. Gene
prioritization integrates the rank of genes targeted by CRC-specific miRNAs and the ranks
revealed by the scRNA-seq data of relevant tumors. We use one miRNA-based metric and
two scRNA-seq-based metrics to construct a linear model with metric weights that are
further optimized in the subsequent step, using bulk RNA-seq data from patients with
survival data.

CCsc combines the outputs of three different metrics to get a final ranked list of genes.
The metrics used are the interaction scores from the different miRNAs and the genes that
they bind to (miRNA), the Median Absolute Deviation (MAD) of gene expression profiles,
and the inference of switch-like differential expression along single-cell trajectories of
genes in different stages of EMT (SDE) (R Core Team, Austria, 4.2.2) (University of Oxford,
England, 1.22.0) [13,14].

2.2. miRNA Metric for Ranking Genes

The miRNA metric involves first obtaining the overlap of two databases (miRmap and
dbDEMC); dbDEMC contains many experimentally validated microRNAs for the cancer
of interest (Computational Genetics Group, China, 2.0) (Zdobnov Group, Switzerland,
1.2.0) [15,16]. We took the intersection of the cancer-specific miRNAs from dbDEMC with
all of the miRNAs in miRMap. dbDEMC has collated 2224 differentially expressed miRNAs
from 36 different cancer types. The miRNAs common to the dbDEMC cancer of interest
and present in miRMap were then submitted to TargetScan to acquire the top-ranked genes
that interact with each miRNA (Whitehead Institute for Biomedical Research, Cambridge,
MA, USA, 7.2.0). The optimal number of miRNAs and target genes were determined
later. We created a g × m matrix, where g is the number of genes, and m is the number of
microRNAs based on the interaction data from TargetScan. Each matrix entry is either 0 for
a non-interacting pair or 1 for an interacting pair. We summed the score of each gene and
ranked them from highest to lowest, and returned this list of ranked genes to be used in our
combined linear model (Figure S1), i.e., genes were ranked based on their total numbers of
interacting microRNAs in this metric. We did this for all shared miRNAs for the cancer
of interest.

2.3. Pre-Processing scRNA-Seq Data

Gene ranking in CC Single-cell (CCsc) has three metrics, two of which depend on
processed scRNA-seq data. The single-cell dataset comes from 11 primary colorectal tumors
in [17]. Briefly, the study used the 11 tumors and matched normal mucosal tissue to test an
algorithm (reference component analysis) to improve clustering accuracy and elucidate
new colorectal cancer subtypes [17]. This single-cell data is the foundation for both the
median absolute deviation and the inference of the switch-like differential expression along
single-cell trajectories (MAD and SDE) metrics. We filtered the single-cell data set to include
only those genes expressed in at least 10 cells. Next, we normalized the library size with
the library.size.normalize command from the phateR package (Krishnaswamy Lab, New
Haven, CT, USA, 1.0.7). This command performs normalization on input data, so that the
sum of the expression values for each cell sums to 1, then returns the normalized matrix
to the metric space using the median UMI count per cell, effectively scaling all cells as
if they were sampled evenly. We then took the square root of the dataset to transform
the data, but avoid the instabilities and pseudo counts needed when taking the log of the
dataset, following best practices from [18]. Next, we used the MAGIC package to denoise
scRNA-seq data and imputed the missing gene expression profiles (Krishnaswamy Lab,
New Haven, CT, USA, 2.0.3) [19]. Briefly, it calculates a cell–cell distance matrix in reduced
dimensions. An adaptive Gaussian kernel converts the distance matrix to a cell–cell affinity
(similarity) matrix. Additional steps are used to create a Markov transition matrix. The
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denoised scRNA-seq matrix is created by multiplying the exponentiated Markov transition
matrix by the gene expression matrix.

2.4. Inferring EMT-Based Pseudotime

The SDE metric requires an ordering of cells that represents an activation or deactiva-
tion process. Despite the absence of time-series information, we inferred the pseudotime
ordering of cells in the scRNA-seq data [20]. We used a scRNA-seq dataset for colorectal
tumors that primarily contain epithelial cells [17]. Epithelial-mesenchymal transition is
a known driver for epithelial plasticity and tumor progression for colorectal cancer and
several other cancer types [17,21–24]. There, we used the expression levels of a specific
mesenchymal signature gene, VIM, as an approximation for cells progressing through
EMT [24–26]. In the scRNA-seq dataset, we found that the expression levels of most epithe-
lial (E) genes were negatively correlated with pseudotime, whereas those of mesenchymal
(M) genes were positively correlated with pseudotime (Figure S2) [23,24]. This suggests
a reasonable pseudo-temporal ordering of epithelial tumor cells. It should be noted that,
here, we do not use pseudo-temporal ordering to infer trajectories of cell state transitions
during development. We, therefore, do not analyze the connectivity of cell state attractors
(cell types). Instead, the ordering allows us to analyze the variations in expression for
all genes in a relatively uniform framework of cell states (see the description of the SDE
method below).

2.5. MAD Metric for Ranking Genes

MAD is calculated with

mg = median(e1, e2, . . . , ec) (1)

MAD(g) = median
( ∣∣e1 − mg

∣∣, ∣∣e2 − mg
∣∣, . . . ,

∣∣ec − mg
∣∣) (2)

where ei represents the expression level of a gene g in cell i, and c is the number of cells.

2.6. Inference of Switch-Like Differential Expression along Single-Cell Trajectories (SDE) Metric
for Ranking Genes

To calculate SDE, we used the R package switchde, which estimates the differentiation
of switch-like genes in different stages of EMT. It defines a sigmoid function

f
(

tc; µ0
g; kg; t0

g

)
=

2µ0
g

1 + exp
(
−κg

(
tc − t0

g
)) (3)

to fit the profile of a gene g concerning a pseudotime. In Equation (2), µ0
g corresponds to

the average peak expression; κg is the activation nonlinearity; tc is the active pseudotime of
g in cell c; and t0

g is the offset of the activation. Intuitively, κg represents how quickly the
gene g is up or downregulated along the pseudotime and is used as the metric score. Note
that κg may reflect how genes are switched on or off dynamically due to transcriptional
bursting [27], but it can also include other sources of variability of gene expression, such as
mutations and post-transcriptional regulations [28,29]. Therefore, the parameter should be
viewed as a characteristic variational pattern of gene expression across a cell population in
the pseudo-temporal trajectory, common to all genes.

2.7. Overall Gene Prioritization Scoring

To make ranges of gene scores consistent across the three metrics (MAD, SDE and
miRNA), each gene’s final score for each metric was normalized to be between 0 and 1,
by dividing its raw score by the sum of the score of all genes for the metric. Next, we
combined the scores from the three metrics using the function

w = a1wSDE + a2wMAD + a3wmiRNA (4)
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where wSDE, wMAD and wmiRNA are the normalized metric scores. Parameters a1, a2 and a3
are metric weights for combining the metric scores into the overall score w. If a gene does
not have a score for miRNA metric due to the lack of miRNA targeting information, its
score is assumed to be zero. We ranked the genes based on overall scores, and we selected
the genes with high scores (see details later) for the subsequent analysis. The values of a1,
a2 and a3 were determined by a grid search with an interval of 0.1, and the constraint of
the sum of these parameters is 1. The performance of the grid search is based on the Cox
model and the concordance index described below.

2.8. LASSO Regularized Cox Model

To build prognostic models and to further select important genes from the prioritized
lists, we used bulk RNA-seq data and the associated patient survival data from the Cancer
Genome Atlas (TCGA) or cBioPortal for Cancer Genomics. We used a LASSO regularized
Cox model to determine the concordance index and top-performing coefficients. This
regularization uses the L1 lasso penalty. This allows the number of coefficients to be
constrained based on the value of the penalty weight parameter λ that we use. The
regularization was used to avoid the overfitting of our models. Regularizations help to
address overfitting and make Cox models more interpretable. The LASSO regularization,
which involves finding a subset of predictors which give a model’s best overall performance,
is used here to improve the interpretability of our model [30–33]. We used the glmnet
package in R to perform all the LASSO regularized Cox-model fittings (Hastie Lab, Stanford,
CA, USA, 4.1-6) [34,35].

2.9. Concordance Index (C-Index)

The concordance index (C-index) is the primary metric for assessing our method’s
effectiveness. This metric is analogous to the area under the curve–receiver–operator
characteristic, but is applied specifically for survival analysis situations. It is calculated by

C − index =
∑ ∑i<j

[
I
(
ti < tj

)
I
(
ri > rj

)
I(δi ≡ 1) + I

(
ti > tj

)
I
(
ri < rj

)
I
(
δj ≡ 1

)]
∑ ∑i<j

[
I
(
ti < tj

)
I(δi ≡ 1) + I

(
ti > tj

)
I
(
δj ≡ 1

)] . (5)

The C-index is equal to the concordance probability p (ri > rj|zi < zj) for a randomly
selected pair of patients I and j. Unfortunately, we cannot observe the potential survival
time for some patients who are lost to follow-up or are event free at the end of a study (right
censored). Given this, the observed survival time ti = min (zi, ci), where ci is the potential
right censoring time; δi is the censoring status. An event (e.g., death) is when δi = 1. I () is
the indicator function, and r is equal to the risk score for patients i and j, respectively.

Essentially, this metric assesses the ability of a set of input predictors to accurately
judge whether a patient with a particular risk score will get cancer in a specific period.
Specifically, the C-index judges whether a model has discriminatory power and accurately
ranks the patient’s survival time when considering their calculated risk scores. In an ideal
case, a model would ideally separate all patients based on their risk score into their correct
group and would have a performance of 1. A model with a C-index of 0.5 is classified as a
random predictor [36].

2.10. Kaplan-Meier Survival Analysis

The other primary output of our model is a Kaplan–Meier risk estimator (Terry Th-
erneau, Rochester, MN, 3.4-0) [37]. This metric attempts to determine how well a set of
inputs in a model can correctly stratify patients in our datasets as high risk or low risk,
based on their gene expression profiles. The survival probability s at time t is given by

st =
Number of subjects living at the start − Number of subjects who died

Number of subjects living at the start
(6)
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The Kaplan–Meier survival analysis uses the log-rank test to assess whether the high
and low-risk groups’ survival times differ statistically. The statistic is given by

Log − rank test statistic =
(O − E)2

E
(7)

O is the total of the observed events and E is the total of the expected events. For each
event of interest (death), we calculate the number of deaths observed and the number of
deaths expected, if there was really no difference between our groups. This calculation is
performed for both the high and low-risk groups in our data. We then sum the number
of observed and expected events to get O and E in (5). If a survival time is censored, that
particular individual is considered to be at risk of dying in the week of the censoring, but
not in subsequent weeks [38].

A p-value < 0.05 is statistically significant for our Kaplan–Meier survival analysis.

2.11. Datasets

The datasets in this study include several single-cell and bulk RNA-seq datasets, and
we used several scRNA-seq based and bulk RNA-seq based methods either for constructing
our model or benchmarking. The scRNA-seq data was obtained from a previous study on
combined tumor samples of 11 colorectal cancer patients [17]. The bulk RNA-seq data of
colon and rectal cancer were obtained from the Cancer Genome Atlas (TCGA), which were
used to train the Cox models. The colon cancer dataset includes 461 cases, and the rectal
cancer dataset includes 172 cases. The TCGA datasets can be accessed through the Genome
Data Commons web portal or the TCGAbiolinks R package (https://portal.gdc.cancer.gov,
accessed on 1 December 2022) [39]. The additional bulk dataset from the cBioPortal
for Cancer Genomics contains 79 cases and can be accessed through the cBioPortal web
interface (https://www.cbioportal.org, accessed on 1 December 2022) [40]. The scRNA-seq
data can be found at GEO under accession GSE81861.

2.12. Implementation

We have implemented our metric and model in R on GitHub (https://github.com/
compbiolover/CC-Singlecell) (Accessed 1 December 2022). All code and datasets used in
this manuscript are available there.

3. Results

CCsc has three metrics to prioritize genes for prognostic predictions: miRNA (based on
disease-related miRNAs), MAD (based on variability of gene expression), and SDE (based on
switch-like behaviors of gene expression) (see Materials and Methods for details). To evaluate
these three metrics, we tested multiple versions of CCsc. They include CCsc miRNA + MAD
(CCsc MM), CCsc miRNA + SDE (CCsc MS), and CCsc miRNA + MAD + SDE (CCsc MMS)
(Figure 2A,B). To prioritize genes, we used a recent scRNA-seq dataset for colorectal
cancer cells [17], and we used TCGA-COAD (Colon Adenocarcinoma) and -READ (Rectum
adenocarcinoma) datasets for prognostic performance evaluations (see Methods for details).
We compared each combination’s mean 10-fold cross-validated C-index, while holding the
number of genes constant. We did this for both TCGA-COAD and TCGA-READ. Based on
our test results (Figures S3 and S4), we concluded that combining all three metrics gave us
the best mean concordance index performance across both datasets. In addition, we found
that CCsc MMS could separate high-risk from low-risk patients for both the TCGA-COAD
and TCGA-READ datasets (Figure 2C,D). Taken together, the combinations of all three
metrics (i.e., CCsc MMS) perform better than other choices, suggesting the importance of
prioritizing genes based on both miRNA-targeting information and the summary statistics
of expression. We therefore used CCsc MMS for our subsequent analyses.

https://portal.gdc.cancer.gov
https://www.cbioportal.org
https://github.com/compbiolover/CC-Singlecell
https://github.com/compbiolover/CC-Singlecell
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Figure 2. Combination of metrics is better than any individual metric. (A) We tested each of our
models’ metrics and compared them to CCsc MS, CCsc MM, and CCsc MMS and a set of randomly
selected genes, equal to the number of genes used by our method on the TCGA-COAD dataset. (B) We
made the same comparison on the TCGA-READ dataset. We show that integrating the lists of ranked
genes from each metric provides better performance than any one individually. (C) Kaplan–Meier estimate
based on our model’s top set of predictors for the TCGA-COAD dataset. (D) Kaplan–Meier estimate based
on our model’s top set of predictors for the TCGA-READ dataset. The shaded regions represent 95%
confidence intervals of the survival estimates. The p-value threshold for significance is < 0.05.

To further evaluate the importance of miRNA-targeting in gene prioritization, we
compared the mean 10-fold cross-validation performance of CCsc MMS to that of several
other methods that select genes based on differential expression. For this comparison,
we chose two methods initially designed for bulk RNA-seq analysis, but that have been
updated to use single-cell data (DESeq2 and edgeR), and two methods designed specifically
for scRNA-seq data (scDD and DEsingle). For both TCGA-COAD and TCGA-READ, CCsc
MMS has the best mean 10-fold performance compared to all other methods. In the case of
COAD, CCsc has a markedly better performance (0.7514 vs. ~0.65 for all other methods)
and a slightly higher performance with READ (0.8442 vs. 0.8023 for scDD) (Figure 3).
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Figure 3. CCsc MMS Outperforms Other Methods. (A) We tested CCsc against several well-
established tools on the TCGA-COAD dataset. We compared the mean concordance index per-
formance of CCsc with its ideal weighting to DESeq2, edgeR, scDD, and DEsingle. We gave each
method its optimal number of genes and ran each with its recommended settings, according to their
respective best practices. (B) Same comparison but on the TCGA-READ dataset. We show that
CCsc outperforms single-cell methods (scDD and DEsingle) and that bulk RNA-seq methods can be
optimized for single-cell RNA-seq data (DESeq2, edgeR).

We then asked what the top predictors in the model were. We found 13 genes that
had a hazard ratio > 2 for COAD, and 16 such genes for READ. Next, we found 12 genes
that had a hazard ratio < 0.5 for COAD, and 19 genes for READ (Figure 4A,B). Many
of the genes that increase patient risk (12/13 COAD and 11/16 READ) were previously
implicated in cancer progression (Tables 1 and 2).

Figure 4. Top coefficients identified by our model. (A) Top risk decreasing (green, left) and top risk
increasing (red, right) genes identified by our Cox model in TCGA-COAD. (B) Top risk decreasing
genes (green, left) and top risk increasing (red, right) genes identified by our Cox model in TCGA-
READ. For risk increasing genes the hazard ratio threshold is > 2. For risk decreasing genes the
hazard ratio threshold is < 0.5.
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Table 1. Top Risk Increasing Genes Identified by TCGA-COAD Cox model: List of the top risk
increasing genes identified by our Cox model on the TCGA-COAD dataset.

Gene Literature Support

ZNF705D [41]
UNC5D [42]

TP53TG3D [43,44]
ST6GALNAC3 [45,46]

RSPH10B [47]
KCNC1 [48,49]
HS6ST3 [50,51]

FAM182A None
FABP7 [52,53]

DNAJC5G [54]
ABCA13 [55]
OPCML [56]
RFPL3S [57]

Table 2. Top Risk Increasing Genes Identified by TCGA-READ Cox model: List of the top risk
increasing genes identified by our Cox model on the TCGA-READ dataset.

Gene Literature Support

ZNF425 [58]
UMODL1 [59]

RN7SKP203 Pseudogene
PPIAP16 Pseudogene
PLXNA4 [60,61]
MFAP3L [62,63]

LGSN [64]
GRAMD4P2 Pseudogene

FMO1 [65]
ENPP7P6 Pseudogene
DUSP26 [66,67]
DGKB [68,69]

MAP3K6 [70]
CD274 [71]

C4A [72]
PCMTD1P3 Pseudogene

Genes such as OPCML have been found to be silenced in tumors, and when reactivated,
they lead to cancer tumor inhibition. Several of the genes found to increase patient risk in
CRC by our model have been found to be silenced in other types of cancers. Additionally,
we examined the genes with the smallest hazard ratios to see which of our model’s genes
might be indictive of better clinical outcomes. We found several genes that were associated
with a substantial reduction in patient risk and have been associated with a decreased
patient risk in various cancers (Tables 3 and 4). Of the top predictors in READ, without
the support of the literature, were all annotated as pseudogenes. However, given the
large hazard ratio of these genes in our model, our results suggest that it either plays
a role in the pathological process or serves as a signal for cellular changes that lead to
cancer progression.
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Table 3. Top Risk Decreasing Genes Identified by TCGA-COAD Cox model: List of the top risk
decreasing genes identified by our Cox model on the TCGA-COAD dataset.

Gene Literature Support

AJAP1 [73]

SLC24A5 None (potassium-dependent sodium/calcium
exchanger)

CACNG8 [74]
C1orf229 None

GRAMD4P3 Pseudogene
ICOS [75]
HAP1 [76]

TENM2 [77]
AC079612.1 [78]
AL133373.1 None

BSND [79]
RS1 [80]

Table 4. Top Risk Decreasing Genes Identified by TCGA-READ Cox model: List of the top risk
decreasing genes identified by our Cox model on the TCGA-READ dataset.

Gene Literature Support

FAM182A None
SLC35F1 [81]
RGS12 [82]
PKHD1 [83]

GCNT1P1 Pseudogene
KCNJ6 None (potassium channel)

RASSF9 [84]
DAP3P2 Pseudogene
WDR87 None
KCNQ3 [85]

PCDH11X [86]
MEG3 [87]

MBLAC2 [88]

SLC44A5 None (Predicted to enable transmembrane
transporter activity)

HNRNPA1P40 Pseudogene
ZNF23 [89]
ACAN [90]

SLC2A14 [91]

Next, we sought to see what pathways and cellular processes were influenced by these
genes. We submitted the genes from Figure 4 (10 for COAD and 13 for READ) separately to
Reactome version 3.7 (https://reactome.org) (Accessed 1 December 2022), and identified
pathways related to NOTCH3 signaling and Flavin-containing monooxygenases (FMO)
oxidizing nucleophiles (Tables 5 and 6). The pathways impacted by the top genes have
been implicated in CRC progression and metastasis [92–97].

https://reactome.org
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Table 5. Statistically Significantly Enriched COAD Pathways: Most enriched pathways influenced
by the genes with the largest hazard ratios associated with increased risk in our TCGA-COAD Cox
model. p-value threshold <0.05 FDR. Hazard ratio threshold >2.

Pathway Literature Support FDR p-Value

NOTCH3 Intracellular
Domain Regulates

Transcription
[92] 1.98 × 10−2

Voltage gated Potassium
channels [93] 1.98 × 10−2

Signaling by NOTCH3 [94] 2.62 × 10−2

Table 6. Statistically Significantly Enriched READ Pathways: Most enriched pathways influenced by
the genes with the largest hazard ratios are associated with increased risk in our TCGA-READ Cox
model. p-value threshold <0.05 FDR. Hazard ratio threshold >2.

Pathway Literature Support FDR p-Value

Activation of C3 and C5 [98] 1.48 × 10−3

STAT3 nuclear events
downstream of ALK signaling [99] 4.74 × 10−3

Signaling by ALK [100] 1.72 × 10−2

FOXO-mediated transcription
of oxidative stress, metabolic

and neuronal genes
[96] 1.72 × 10−2

4. Discussion

CRC has proven to be a complex disease that, despite the marked research focus
and improvements in biomarker detection, still has many open questions. Based on the
important roles that miRNAs play in the regulation of many cellular processes, including
processes related to CRC, we developed a novel metric that uses the prevalence of miRNA-
target interactions to prioritize genes for prognostic models. In conjunction with the
switchde and MAD methods, we create an integrated model, CCsc MMS, to improve
the ability to accurately predict colorectal patient survival. We show this performance
improvement across multiple large datasets related to colon and rectal cancer. We show that
our model outperforms multiple existing methods, including DESeq2, DEsingle, scDD, and
edgeR, which have been developed for identifying differentially expressed genes with both
bulk and single-cell RNA seq data. The improvement is facilitated by the incorporation
of the LASSO regularization. This regularization allows the simplification of the model
and avoids overfitting. When we examined the weight of these genes, we found that many
of our model’s top performers are implicated in various types of cancers, including CRC.
We then performed pathway analysis with Reactome and found that this handful of genes
is enriched in pathways related to NOTCH3 signaling and potassium channels, which
are important in CRC. We attempted pathway enrichment analysis for both the top genes
associated with higher patient risk and those that were associated with lower patient risk.
The top markers in the lower risk analysis for both TCGA-COAD and TCGA-READ did not
meet our significance criteria, and hence no pathways were identified for the lower patient
risk genes. In addition, we found that our method uses comparable numbers of active genes
to those from these existing methods, while giving better performance (Figure S5). We
also found that our approach had a satisfactory performance for non-TCGA CRC datasets
(Figure S6). Finally, we asked if any of the top predictors were known to be regulated
by miRNAs. We found that many of the genes most impactful on patient survival are
directly or indirectly regulated by miRNAs in disease settings (Table S1). In addition, we
quantified the mean expression of all the genes in each of our COAD and READ signatures
and compared them to the overall mean across genes for each of the datasets. For both
COAD and READ, we observed that all genes in our signature sets were well below the
mean expression of all genes in the datasets (Figure S7).
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5. Conclusions

In conclusion, we developed a novel metric based on miRNA-gene target interactions
that improved an integrated model’s predictive performance in CRC. We demonstrated
that our method, CCsc MMS, outperforms existing methods and that we have a more
interpretable model by using a LASSO regularization. We show that CCsc MMS is a
valuable method for predicting the survival of CRC patients and offering an interpretable
and insightful way to examine the most important genes in a large data context. We
show that many of these largest coefficients are enriched for various aspects of NOTCH3
signaling, potassium, and overall metabolism, which has been shown to play an important
role in CRC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12020228/s1, Figure S1: miRNA metric; Figure S2: Pseudo-
temporal ordering analysis; Figure S3: LASSO regularization gives the best performance; Figure S4:
Determination of Ideal miRNA and miRNA target values; Figure S5: CCsc MMS Uses Comparable
Gene Set Size to Existing Methods; Figure S6: CCsc MMS Outperforms other Methods in Non-TCGA
CRC Data; Figure S7: Highly Ranked Gene Targets Show Reduced Expression Level. Table S1:
Genes Identified by Model Regulated by miRNA. Genes are either directly or indirectly regulated
by miRNAs.
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