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Cooperative RNA degradation stabilizes
intermediate epithelial-mesenchymal states
and supports a phenotypic continuum

Benjamin Nordick,1 Mary Chae-Yeon Park,2 Vito Quaranta,3 and Tian Hong2,4,5,*

SUMMARY

Multiple intermediate epithelial-mesenchymal transition (EMT) states reflecting
hybrid epithelial and mesenchymal phenotypes were observed in physiological
and pathological conditions. Previous theoretical models explaining multiple
EMT states rely on regulatory loops involving transcriptional feedback, which
produce three or four attractors. This is incompatible with the observed contin-
uum-like EMT spectrum. Here, we used mass-action-based models to describe
post-transcriptional regulations, finding that cooperative RNA degradation via
multiple microRNA binding sites can generate four-attractor systems without
transcriptional feedback. Furthermore, the newly identified intermediates-
enabling circuits are common in the EMT regulatory network, and they can syner-
gize with transcriptional feedback to support phenotypic continuum. Finally, our
model predicted a role of miR-101 in multistate EMT, and we identified evidence
from single-cell RNA-sequencing data that support the prediction. Our work re-
veals a previously unknown role of cooperative RNA degradation andmicroRNAs
in EMT, providing a framework that can bridge the gap between mechanistic
models and single-cell experiments.

INTRODUCTION

Epithelial-mesenchymal transition (EMT) is a cell state change required for embryogenesis, postnatal develop-

ment, and some diseases’ progression including metastasis (Thiery et al., 2009; Watanabe et al., 2014). During

EMT, epithelial cells lose their apical-basal polarity and gain the ability tomigrate. The transition is not a binary

switch: intermediate cellular phenotypes between epithelial (E) and mesenchymal (M) states have been found

in development, mammalian cell lines, fibrosis, and tumors (Aiello et al., 2018; Grande et al., 2015; Hong et al.,

2015; Pastushenko et al., 2018; Zhang et al., 2014). These intermediate EMT states may possess characteristics

of both E and M phenotypes, which can be important for cell- or tissue-level functions such as collective cell

migration (Campbell et al., 2019). Recent single-cell transcriptomic studies using individual cell lines provide

additional evidence for the existence of multiple intermediate EMT states (Cook and Vanderhyden, 2020,

2022; Deshmukh et al., 2021; Pastushenko et al., 2018). To investigate themechanistic basis of the intermediate

states, theoretical and experimental approaches were used to demonstrate that interconnected transcrip-

tional feedback loops can support intermediate EMT states (Hong et al., 2015; Lu et al., 2013b; Steinway

et al., 2015; Tian et al., 2013). These existing mechanistic models can produce only one or two intermediate

EMT states with a set of biochemical rate constants representing one cell type. Contrary to these models, it

was recently shown that accurate description of EMT dynamics in a singlemammary epithelial cell line requires

several more intermediate states (Goetz et al., 2020). This finding is consistent with transcriptomic data

showing a continuum-like EMT spectrum which possibly contains many stable intermediate cell states

(Cook and Vanderhyden, 2020, 2022; Deshmukh et al., 2021; Pastushenko et al., 2018). These observations indi-

cate that an improved theoretical foundation of the intermediate EMT states is needed to bridge the gap be-

tween models and experimental data. The improved models will in turn provide new insights into the devel-

opmental and pathological processes governed by epithelial-mesenchymal cell plasticity (Aiello et al., 2018;

Pastushenko et al., 2018).

It was shown that EMT involves extensive post-transcriptional regulation by microRNA: more than one hun-

dred miRNAs were found to be significantly associated with EMT (Cursons et al., 2018; Hussen et al., 2021).

Both epithelial-associated microRNAs and mesenchymal-associated microRNAs have been identified,
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inhibiting mesenchymal genes (M genes) and epithelial genes (E genes), respectively. Mechanistically, this

microRNAs-mediated inhibition often acts through mRNA degradation and translation repression upon

microRNA-mRNA binding (Bartel, 2018). It was recently shown that multiple epithelial-associated micro-

RNAs can inhibit in a strongly cooperative manner (Cursons et al., 2018), further supporting the roles of

microRNAs in EMT. While existing models describing intermediate EMT states often include microRNA

regulations, these models still require multiple transcriptional feedback loops to account for intermediate

states (Hong et al., 2015; Lu et al., 2013b; Tian et al., 2013). It is therefore unclear whether intermediate EMT

states can arise from simpler, more common gene regulatory networks. Recently, Li et al. used mass-action

kinetics, a detailed description of biochemical reactions, to model microRNAs-mRNA reactions, including

regulated degradation, with up to three microRNAs binding sites (Li et al., 2021). The models and subse-

quent experiments showed that these common microRNAs networks can generate two cell states (Li et al.,

2021). This study and the extensive involvement of microRNAs in EMT suggest the possibility that reaction

networks involving more than three microRNA-binding sites can be a hitherto unknown mechanism for in-

termediate EMT states.

In this work, we use models describing elementary RNA reaction networks to show that cooperative RNA

degradation can generate intermediate EMT states in the absence of transcriptional feedback. We use bio-

informatic approaches to demonstrate that the structures of gene regulatory networks allowing multiple

intermediate states are widespread in the EMT system. Furthermore, we demonstrate that the transcrip-

tional and post-transcriptional mechanisms can be combined to support larger numbers of intermediate

EMT states in both modular and emergent manners. Finally, we use a large EMT model to show that coop-

erative RNA degradation can facilitate the formation of a phenotypic continuum. This model predicts the

role of miR-101 in multistate EMT, a prediction we validate with recent single-cell RNA-sequencing data.

Our work reveals a previously unknown mechanism for stabilizing intermediate EMT states and provides

a new theoretical framework for understanding the perplexing EMT spectra in development and disease

progression.

RESULTS

Cooperative RNA degradation generates intermediate EMT states in the absence of

transcriptional feedback

Based on recent theories and experiments showing post-transcriptional mechanisms for bistability (Li et al.,

2021), we hypothesized that intermediate EMT states can arise without transcriptional feedback. To test the

hypothesis, we first considered models with mass-action kinetics describing interactions between micro-

RNAs and mRNAs as well as their synthesis and degradation. It was previously proved that with arbitrary

positive rate constants, an mRNA with one microRNA-binding site (the MMI1 Model) can have only one

stable steady state and that an mRNA with two microRNA-binding sites (the MMI2 Model) can have at

most two stable steady states (Li et al., 2021). Systematic search with biologically relevant parameter

sets showed that, like the MMI2 Model, an mRNA with three microRNA-binding sites (the MMI3 Model)

can have at most two stable steady states (Li et al., 2021).

We therefore built a model containing an mRNA with four microRNA-binding sites: the MMI4 Model. In the

first version of the MMI4 Model, the four microRNA-binding sites are bound by one type of microRNA. The

two RNAs can form four types of complexes through complementarity-based binding, i.e. 1: n complex

where n˛ ð1; 2; 3; 4Þ represents the number of microRNA molecules in each complex (Figure 1A,

Table S1). The two RNAs are allowed to be degraded independently with distinct rate constants in the com-

plexes. Details of all models can be found in the supplemental information. We randomly sampled param-

eter values within biologically plausible ranges (see STARmethods). Out of 107 sampled parameter sets, we

found 1,732 that generated three stable steady states (i.e. three attractors, i.e. tristability, Figures 1B and

1C) and none that generated four attractors (tetrastability). The third attractor at which the concentration of

an EMT marker gene is neither minimal (E state) nor maximal (M state) for the system represents an inter-

mediate state. The tristable parameter sets, i.e. those permitting an intermediate state, are generally

robust to changes of at least 10% in any single relative RNA degradation rate (Figure S1). Their degradation

rate constants, while individually plausible, are however collectively unusual. For example, the most

extreme degradation rates are often found in unsaturated complexes (Table S2), which would require

the mRNA to be strongly stabilized by the binding of additional microRNA molecules. While the structure

of the model is applicable to EMT (all 7 matching target genes shown in Figure 1D and Figure S6A), the
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Figure 1. Multistability in the MMI4 Models

(A) Reactions in the one-microRNAMMI4Model, which has four binding sites for the samemicroRNA on onemRNA.Wide

rectangles, mRNA; squares, microRNA; horizontal arrows, transcription; colored arrows, RNA degradation; curved

arrows, binding/unbinding.

(B) Example tristable systems from the one-microRNAMMI4Model. Points represent attractors in the space of free mRNA

vs. free microRNA concentration. Attractors of the same system/parameterization are joined by lines of the same color.

AU, arbitrary units.

(C) Bifurcation diagrams showing the steady states of free mRNA (left) and free microRNA (right) as a function of the

mRNA transcription rate kR from the brown system in B. Each steady state is colored the same in both plots. Dashed lines,

unstable steady states. Parameter values in Table S2.

(D) Other EMT-related examples of the one-microRNA MMI4 Model.

(E) Reactions in the two-microRNA MMI4 Model, which has two binding sites for each of two microRNAs on one mRNA.
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dependence on unusual parameter progression makes the single-microRNA MMI4 Model unlikely to drive

multistability in vivo.

We considered that allowing the four binding sites to be bound by different microRNAs allows themodel to

represent more post-transcriptional EMT circuits with potentially more realistic parameter sets. We there-

fore considered amodified version of theMMI4Model which describes twomicroRNAs each with two bind-

ing sites on the mRNA (Figure 1D and Table S3). This structure indeed allowed theMMI4 Model to produce

three- and four-attractor systems with more biologically plausible parameter progressions (Table S4) and

low dependence on any individual degradation rate (Figure S3). These systems contain intermediate EMT

states that may be related to the widely observed phenotypes (Figures 1F and 1G). To test the importance

of functional cooperativity in stabilizing intermediate states, we randomly sampled parameter sets until

5,000 systems with at least three attractors had been obtained. Almost all, 4,973 of the 5,000, involved

cooperative degradation of RNAs. The cooperativity is generated by the enhanced degradation rate con-

stant of the mRNA in 1:2 complex with a microRNA compared to the 1:1 complex or by reduced degrada-

tion rate constant of the microRNA in 1:2 complex compared to the 1:1 complex (Figures 1H and S5). Coop-

erative mRNA degradation is observed experimentally (Grimson et al., 2007); functionally cooperative

microRNA stabilization might arise through steric blocking of microRNA-degrading factors (Kai and Pas-

quinelli, 2010). Three instances of the two-microRNAMMI4 Model are shown in Figure 1I; all 45 EMT genes

matching the model are shown in Figure S6B.

EMT is regulated by a large gene regulatory network, in which many genes are targeted by multiple mi-

croRNAs (Hong et al., 2015; Huang et al., 2017; Lu et al., 2013b; Tian et al., 2013). Furthermore, the MMI2

Model can generate bistable systems (Li et al., 2021). We therefore asked whether connecting two MMI2

modules (the Chained-MMI2 Model, Figure 2A and Table S5) can enable intermediate EMT states. While

this single connection can represent an EMT transcription factor regulating another, this network still

does not contain any transcriptional feedback. We found that the Chained-MMI2 Model was able to

generate intermediate EMT states in terms of the target gene expression (Figure 2B). Considering

only direct regulations between EMT genes found in the TRRUST2 or OmniPath databases, we found

8 instances of the Chained-MMI2 Model in the EMT network (Methods, Figure S9A). If indirect regula-

tions of up to 5 steps (i.e. 4 intermediate genes) are allowed, up to 171 combinations of EMT genes

match the model.

We next considered another scenario where one EMT gene is regulated by two EMT transcription factors

(Batlle et al., 2000; Vannier et al., 2013), each involved in an MMI2 module (the Co-targeting-MMI2 Model,

Figure 2C and Table S7). With this model, intermediate EMT states were observed in terms of the expres-

sion of the final target EMT gene (Figure 2D), arising in a combinatorial manner from the multiple upstream

bistable systems. The 18 direct-regulation instances of this model in the EMT network are shown in Fig-

ure S9B. If allowing indirect regulations of up to 5 steps, up to 1,312 sets of EMT genes match the Co-

targeting-MMI2 Model.

In summary, we showed that a model with a total of four microRNA-binding sites on either one or two

EMT genes can generate intermediate EMT states. In each of the four versions of the model,

cooperative RNA degradation stabilizes these intermediate states. Intermediates-enabling topologies

are common in the EMT system. In fact, 55 of 423 classically defined EMT genes are involved in direct-regu-

lation versions of these topologies, so many seemingly unidirectional interactions between well-known

EMT genes could potentially contribute to the multistate dynamics associated with feedback (see STAR

methods).

Figure 1. Continued

(F) Example tetrastable systems from the two-microRNAMMI4Model in the space of freemRNA vs. freemicroRNA 1 (left) or freemicroRNA 2 (right). Order of

attractors connected by each line is the same in both subplots.

(G) Bifurcation diagrams showing the steady states of free mRNA (left), free microRNA 1 (middle), and free microRNA 2 (right) as a function of the mRNA

transcription rate from the green system in F. Parameter values in Table S4.

(H) Left: Scatterplot of functional cooperativities in mRNA degradation (a2;0=a1;0) and microRNA 1 degradation (b1;2;0=b1;1;0) rates due to second microRNA 1

binding in 5,000 3- or 4-attractor systems. Marginal distributions are Gaussian kernel density estimates. Right: Comparison of multistable cooperativity

distributions for both microRNAs to distribution of 50,000 randomly sampled parameter sets.

(I) Other examples of the two-microRNA MMI4 Model in EMT genes.

See also Tables S1–S4 and Figures S1–S6.
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Modular and emergent synergies between post-transcriptional and transcriptional networks

in generating EMT states

It is well known that transcriptional positive feedback loops can generate bistability (Gardner et al., 2000).

This type of feedback loop is common in the core EMT regulatory network (Hong et al., 2015). Further-

more, hybrid transcriptional and post-transcriptional mechanisms can generate tristability according to

previous models (Lu et al., 2013a, 2013b). We next asked whether combining a module consisting of a

transcriptional feedback loop (transcriptional module) with a post-transcriptionally driven, intermedi-

ates-enabling module (post-transcriptional module) can generate even more intermediate EMT states

(Jiménez et al., 2017). To test this, we first selected a bistability-enabling parameter set for a represen-

tative transcriptional module containing two mutually activating transcription factors (Figure 3A Module

1, Table S9). We next selected a parameter set for a tetrastability-enabling post-transcriptional module,

the Chained-MMI2 Model (Figures 2A and 3A Module 2, Table S5). Without altering the values of param-

eters unique to each module, we considered new values for the parameters that conflict, namely the tran-

scription and translation rates of the upstream gene in the Chained-MMI2 Model. We found that there

existed values between each pair of original models’ values that allowed the addition of at least one in-

termediate state to the existing states generated by the post-transcriptional module (Figure 3B). Even in

6-attractor systems, only the dependence of mRNA 0 transcription on Protein 1 is a very sensitive param-

eter for multistability (Figure S10). It is also remarkable that the addition of intermediate states was

achieved without altering the biochemical rate constants within each module, suggesting feasibility of

this phenotypic change through evolution.

Figure 2. Tetrastability from transcriptionally connected MMI2 targets

(A) Reactions in the Chained-MMI2 Model, in which the protein product of one MMI2 target gene transcriptionally

regulates another MMI2 target gene. Either microRNA site on each mRNA is allowed to be bound first. Hollow arrows,

translation; dashed pointed arrow, transcriptional activation; stars, proteins.

(B) Example tetrastable systems from the Chained-MMI2 Model in the space of Protein 2 vs. Protein 1 (left) or free

microRNA 2 (right). Each system has four different expression levels of Protein 2, which are monotonically anticorrelated

to free microRNA 2 levels.

(C) Reactions in the Co-targeting-MMI2 Model, in which two MMI2 target genes encode proteins that both

transcriptionally regulate a third downstream gene. Either microRNA site on each mRNA is allowed to be bound first.

Dashed blunt arrow, transcriptional repression.

(D) Example tetrastable systems from the Co-targeting-MMI2 Model in the space of the downstream

mRNA expression vs. Protein 1 (left) or Protein 2 (right). Each system has four different expression levels of the

downstream gene.

See also Tables S5–S8 and Figures S7–S9.
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Modular combination of transcriptional and post-transcriptional mechanisms for generating multistable

systems is applicable to EMT, but there might also exist ‘‘emergent’’ synergy between transcriptional

and post-transcriptional regulations: a transcriptional module may not be multistable by itself, but when

it is combined with a multistable, post-transcriptional module, additional attractor(s) can arise. Indeed,

we obtained an intermediate state by extending the bistability-enabling MMI2 module with a single tran-

scriptional repression of the microRNA by the gene product (Figure 3D). Mechanistically, the emergence of

this intermediate cell state was due to the emergent feedback loop between the microRNA and

mRNA, consisting of both transcriptional and post-transcriptional regulations (Figure 3C and Table S12).

It was previously shown that this type of hybrid feedback system is common in biology (Minchington

et al., 2020). Importantly, the well-known Zeb1-miR200 feedback loop contains this network topology

(Bracken et al., 2008). Our results indicate that the previously known tristability-enabling structure of the

Figure 3. Synergies between transcriptional and post-transcriptional multistability

(A) The model resulting from combining a transcriptional mutual activation module (genes 0 and 1, purple shading) with a

Chained-MMI2 module (genes 1 and 2, orange shading).

(B) Example five- and six-attractor systems produced by combining bistable transcriptional mutual activation parameter

sets with tetrastable Chained-MMI2 parameter sets. All concentrations are in arbitrary units.

(C) The model resulting from adding transcriptional repression of the microRNA to the MMI2 Model.

(D) Bifurcation diagrams showing the steady states of protein (left) and free microRNA (right) levels with respect to the

mRNA transcription rate. Tristability can emerge from the addition of the transcriptional repression to MMI2.

(E) The addition of transcriptional repressions to the two-microRNA MMI4 Model. The mRNA-microRNA complexes are

hidden for compactness.

(F) Example five-attractor systems emerging from the addition of transcriptional repressions to the two-microRNAMMI4Model.

See also Tables S9–S15 and Figures S10–S13.
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Zeb1-miR200 feedback loop and Zeb1 self-regulation is not the minimal topology for generating an EMT

intermediate state (Lu et al., 2013b; Tian et al., 2013). Likewise, we found that adding transcriptional repres-

sion to the two-microRNA MMI4 Model permits the appearance of a fifth attractor (Figures 3E, 3F, and

Tables S14, and S15).

In summary, our results suggest that the post-transcriptional and transcriptional networks commonly

observed in the EMT system can be combined in both modular and emergent fashions to generate addi-

tional intermediate phenotypes.

A multiple-feedback-mechanism EMT network generates a 7-state EMT continuum

How does the RNA degradation-based mechanism for multistability contribute to the formation of inter-

mediate EMT states in networks larger than simple motifs? To address this question, we first selected an

EMT model published recently: Subbalakshmi et al. showed that a network containing three transcription

factors and thirteen transcriptional regulations can generate a three- or four-attractor EMT systemwith bio-

logically meaningful parameters (Subbalakshmi et al., 2022). While there are numerous existing EMT

models for tetrastable systems, we chose the Subbalakshmi et al. model because only one microRNA

was considered in the model, so it serves as a good basal model for us to test the effect of cooperative

RNA degradation by addingmore biologically relevant microRNA-binding sites sequentially to the system.

As the base model contains inhibition of ZEB1 and SNAI2 by miR-200 without explicit modeling of multiple

complexes, we added an additional binding site on ZEB1 to the model (Figure 4A and Table S16) and

selected a parameter set representing cooperative RNA degradation. As expected, the model with two

binding sites of miR-200 produced a system with five attractors (Figures 4B and 4C), i.e. an additional inter-

mediate EMT state compared to the previously published results. We next considered another microRNA,

miR-101, that regulates ZEB1 (Guo et al., 2014) and is repressed by slug and snail (Huang et al., 2017; Zheng

et al., 2015) (Figure 4D and Table S18). Note that these additional regulations do not introduce any addi-

tional transcriptional feedback loops. The inclusion of this microRNA allowed yet two additional interme-

diate EMT states, resulting in a seven-attractor EMT system (Figure 4E blue).

To test the effect of cooperative RNA degradation with transcriptional noise, we performed stochastic sim-

ulations of the one-microRNA Subbalakshmi et al. network (Figures 4A–4C) and the extended model with

two microRNAs (Figures 4D–4G), applying the same level of multiplicative noise to all RNAs, complexes,

and proteins. Based on the steady-state distributions of molecules from at least 480 simulations each rep-

resenting a cell from a population, we constructed the quasi-steady-state landscape to visualize the multi-

attractor systems under the influence of noise. As expected, cooperative RNA degradation via multiple

binding sites gave rise to gene expression states near the additional attractors (Figure 4F yellow). Notably,

it also resulted in broader distributions of gene expression further from the attractors (Figure 4F orange,

compare to Figure 4C). That is, a deterministic attractor—which may be highly sensitive to several aspects

of Zeb1 regulation (Figure S15)—is not required for a region of gene expression space to be populated in

the presence of noise. While the wider distribution of epithelial and mesenchymal marker genes is not sim-

ply an artifact of simulating the more complex model (Figure 4G), the new complexes involving the addi-

tional microRNA do generally create more axes in concentration space. Fluctuations in gene expression

space can then be amplified in impact by functional cooperativity in degradation rates, pushing the system

toward a different state.

Figure 4. Combining transcriptional and post-transcriptional regulation produces many attractors and a continuum in epithelial-mesenchymal

space

(A) Structure of the Subbalakshmi et al. model extended with two explicitly modeledmiR-200 binding sites on ZEB1. mRNA-microRNA complexes are hidden

for compactness.

(B) Example 5-attractor systems from themodel in A shown in the gene expression space of Zeb1 protein vs. E-cadherin protein, Slug protein, or freemiR-200.

(C) Quasi-potential diagram showing the stochastic gene expression landscape of the blue system in B under multiplicative noise in the space of E-cadherin

protein vs. Zeb1 protein. Deeper regions and brighter color correspond to more likely gene expression states. Spheres, deterministic attractors.

(D) Structure of the Subbalakshmi et al. model further extended with miR-101 targeting one site on ZEB1, transcriptionally repressed by Slug and Snail.

(E) 7-attractor (blue), 6-attractor (orange), and 5-attractor (green) systems from the model in D. All concentrations are in arbitrary units.

(F) Quasi-potential (QP) diagram of the 7-attractor blue system in E.

(G) Quasi-potential diagram of the 5-attractor green system in E. Not every parameter set of the extended two-microRNA model exhibits the broad

distribution found in F.

See also Tables S16–S19, Figures S14, and S15.
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Our new model (Figure 4D) proposed a role of miR-101 and its stepwise changes of expression level in EMT

progression. To test this prediction, we next analyzed two single-cell RNA-sequencing (scRNA-seq) datasets

from TGF-b-driven EMT. Transcriptome data for 3,568 A549 cells from a time course experiment (Cook and

Vanderhyden, 2020) and for 11,220 MCF10A cells from a dose-dependent, nearly steady-state experiment

(Panchy et al., 2022), were visualized using Uniform Mani-fold Approximation and Projection (UMAP). Consis-

tent with earlier analyses (Cook and Vanderhyden, 2020; Panchy et al., 2022), cells were distributed in contin-

uous space for each dataset (Figure 5A), suggesting an EMT continuum. Furthermore, median expression of

ZEB1 positively correlated with the progression of EMT, whereas that of CDH1 had the opposite trend

(Figures 5B and 5C) (the negative correlation of CDH1 in A549 cells was not significant due to low detection

rate). Interestingly, the mean target gene expressions for both miR-200b/c andmiR-101 were positively corre-

latedwith the progression of EMT, suggesting stepwise changes of their expression levels (Figures 5D and 5E).

These effects were not due to the time/dose-dependent changes of overall gene expression patterns (see

STAR methods), and they are consistent with the predictions from our model (Figure 4E).

In summary, in a larger EMT network containing both transcriptional and post-transcriptional regulations,

cooperative RNA degradation via multiple microRNA-binding sites gave rise to additional attractors and a

broader distribution of gene expression, reflecting the EMT continuum observed in recent single-cell tran-

scriptome data.

DISCUSSION

Intermediate, or hybrid, EMT phenotypes have been widely observed in several biological contexts. In this

work, we have used mathematical models to demonstrate a new mechanism for generating intermediate

EMT states based on first principles of gene regulation. This finding can serve as a step toward the recon-

ciliation of the observed EMT continuum with transcriptomic studies and the three or four discrete EMT

states captured by previous models. While the observed EMT continuum may be alternatively explained

by large subpopulations of cells en route to different attractors, recent work using cell-state transition

models to explain experimental data showed that models with only a few states cannot describe the

time course EMT data accurately (Goetz et al., 2020). The newly identified post-transcriptional mechanism

for generating intermediate states provides a foundation for the additional EMT states necessary to explain

expression data at the gene regulation level. A recent study showed that similar post-transcriptional

Figure 5. EMT continuums and progression of microRNA activities validated by scRNA-seq data

Two scRNA-seq datasets (GSE147405 and GSE213753) for A549 and MCF10A respectively were visualized with UMAP and expression profiles of individual

genes.

(A) UMAP plots show distributions of 3568 A549 cells and 11,220 MCF10A cells. Colors indicate treatment conditions.

(B and C) Boxplots show medians and interquartile ranges of ZEB1 and CDH1 expression under each condition. * indicates the exclusion of cells with no

expression. r denotes the Pearson correlation coefficient for quantities on both axes.

(D and E) Boxplots show medians and interquartile ranges of miR-200c and miR-101 activities inferred from their target gene expressions (see STAR

methods).
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reactions can generate oscillations on slow timescales in addition to multistability (Nordick et al., 2022),

which suggests another possibility that the EMT continuum may be supported by a combination of point

attractors and cyclic attractors.

Cooperativity of microRNA-binding sites has been widely observed (Buck et al., 2014; Cursons et al., 2018;

Lai et al., 2019). In particular, Cursons et al. showed high cooperativity betweenmultiple microRNAs in con-

trolling EMT (Cursons et al., 2018). In this work, we modeled the cooperativity of microRNA-binding sites in

the form of synergistic mRNA degradation, which was also experimentally observed, and synergistic micro-

RNA stabilization. There are other forms of biologically plausible synergy between binding sites, such as

cooperative binding affinities, cooperative translational inhibition, and competition for one microRNA’s

binding to 30UTRs of multiple mRNAs (e.g. miR-200 in the last model of this study) (Briskin et al., 2020; Grim-

son et al., 2007). We expect that some of these mechanisms can be used to support stable intermediate cell

phenotypes. Future work is necessary to systematically compare the functions of these molecular mecha-

nisms and to identify their existence in specific biological contexts. Nonetheless, the prevalence of the

multi-site microRNA interactions with individual and groups of mRNAs in EMT and other systems suggests

that these regulatory networks have nontrivial emergent functions.

In this study, we showed similar and modularizable performances of transcriptional and post-transcrip-

tional mechanisms in generating intermediate EMT states. These two mechanisms are different in

their cellular locations. While it may be beneficial for cells to combine both nuclear (transcriptional) and

cytosolic (post-transcriptional) machineries to achieve the desired goal of stabilizing intermediate states,

the post-transcriptional mechanism may be advantageous in terms of avoiding some sources of noise.

This is because transcription is subject to significant noise levels due to the low numbers of DNA coding

for the regulatory products, whereas post-transcriptional mechanisms involve larger numbers of

molecules (Kataruka et al., 2022), which reduce intrinsic noise. Therefore, we expect that the proposed

RNA-centric mechanism for stabilizing intermediate EMT states can be an efficient strategy for cells to

adopt hybrid phenotypes with cytosolic reactions without the need for transcriptional regulatory systems.

Themotivation to build ourmodels derived from inconsistencies between existing EMTmodels that predict

a paucity of EMT intermediate states, and experimental single-cell transcriptomic data that have been in-

terpreted to support awealth of states in aphenotypic continuum (Cook andVanderhyden, 2020;Deshmukh

et al., 2021; Panchy et al., 2022). It should be noted that some continuum-like expression distributions re-

vealedby scRNA-seqmay bedue to technical noise, whose effects on EMTprogressionwarrant future inves-

tigation.Nonetheless, it is plausible that someof the intermediate states should be favored, perhaps in rela-

tionwithmicroenvironmental factors such as nutrient availability and cytokines. Themodels wepresent here

can guide experimentation designed to validate the role of microRNAs to stabilize a constrained number of

intermediate cell phenotypes both in physiologic and pathologic systems beyond EMT. For example, in

small-cell lung cancer, a phenotypic continuum spanning neuroendocrine (NE) and non-neuroendocrine

(non-NE) cell states was recently described based on archetype analysis (AA) of experimental data (Groves

et al., 2022; Hausser and Alon, 2020). NE to non-NE transitions bear many similarities to EMT, particularly as

it pertains increased metastatic properties of non-NE cells, and the similarity of transcriptional signatures

(Ireland et al., 2020). Similar to the EMT phenotypic continuum, AA identified a phenotypic continuum for

SCLC NE and non-NE subtypes, which gene expression enrichment links to cellular task they are optimized

for, such as secretion, proliferation, or motility. In this continuum, cells may be specialists at one task or sub-

optimal generalists at one or more tasks. Thus, the intermediate generalist phenotypes arise from task

trade-offs, so that they can perform suboptimally to be in tune with the microenvironment that they expe-

rience. The continuum then becomes dominated by Pareto optimality. Interrogating the role of microRNAs

in NE to non-NE transitions intermediates will provide mechanistic underpinnings for plasticity and high

metastatic propensity of SCLC tumors. Our modeling approach is a valuable starting point for streamlining

these experiments. In summary, future studies may reveal that post-transcriptional mechanisms are widely

used by mammalian cells for generating intermediate states, both for EMT and other differentiation sys-

tems. Our mathematical models will aid in designing experiments to test this possibility.

Limitations of the study

While it is expected that several gene regulatory mechanisms can generate multistable systems (Angeli

et al., 2004; Li et al., 2017; Markevich et al., 2004), the predicted co-existing cell states from cooperative

RNA degradation models were not validated experimentally in this study, and they warrant future work.
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The observed EMT continuum at the transcriptome level (Cook and Vanderhyden, 2020; Deshmukh

et al., 2021; Panchy et al., 2022) does not exclude the possibility that only a few cell states emerge

post-translationally to govern cellular phenotypes in a more discrete manner. Future work is needed

to quantitatively characterize the continuity of EMT spectrum in terms of functional phenotypes.
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METHOD DETAILS

Model construction

Each model is described by a system of ordinary differential equations (ODEs). Dynamics of molecular spe-

cies are described by two types of function. Mass-action kinetics is used to model elementary reactions, i.e.

the basal processes of RNA transcription/maturation, constitutive RNA decay, mRNA-microRNA binding

and unbinding, regulated decay of each RNA member of each complex, translation, and protein decay.

If applicable to the model, Hill functions are used to describe regulated transcription rates as in HiLoop

models (Nordick and Hong, 2021):

f � 1

1+ ðX=KÞn (Equation 1)

for repression, or

f � ðX=KÞn
1+ ðX=KÞn (Equation 2)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Single-cell RNA-seq data for TGF-b induced

EMT in A549 lung epithelial cell line

(Cook and Vanderhyden, 2020) GEO: GSE147405

Single-cell RNA-seq data for TGF-b induced

EMT in MCF10A breast epithelial cell line

(Panchy et al., 2022) GEO: GSE213753

Software and algorithms

Multistable model parameterization search

scripts

This paper https://github.com/BenNordick/MMI4

Tellurium 2.2.0 (Choi et al., 2018) https://tellurium.analogmachine.org/

SciPy 1.1.0 (Virtanen et al., 2020) https://scipy.org/

NetworkX 2.5.1 (Hagberg et al., 2008) https://networkx.org/

Scikit-learn 0.20.0 (Pedregosa et al., 2011) https://scikit-learn.org/

Python 3.8.5 Python Software Foundation https://python.org/
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for activation, where X is the concentration of the regulator protein, K is the threshold of regulation, n is the

cooperativity of regulation, and f is the proportion of maximum transcription rate controlled by this regu-

lator. Multiple regulatory influences are combined by adding their Hill functions.

The models based on the Subbalakshmi et al. network follow the form used there and by Lu et al. (Lu et al.,

2013b; Subbalakshmi et al., 2022)

HsðX ; K ; n; FÞ = H �ðX ;K ;nÞ+ Fð1 � H �ðX ;K ;nÞÞ (Equation 3)

where

H �ðX; K ; nÞ = 1

1+ ðX=KÞn (Equation 4)

and F is the fold-change in target expression resulting from overexpression of the regulator. Multiple reg-

ulations are combined by multiplying their Hs functions.

In all models, each type of RNA within each type of complex is assigned a regulated degradation factor, a

for mRNAs or b for microRNAs, representing the change in its degradation rate in the complex relative to its

free state (Nordick et al., 2022).

Binding and unbinding in RNA complexes is always modeled explicitly to ensure that eachmicroRNAmole-

cule acts on only one mRNA at once, though Subbalakshmi et al.’s allowance of incomplete translation

repression t by microRNA binding (Huntzinger and Izaurralde, 2011) is followed. For all mRNA-microRNA

binding events in all models, the microRNA dissociation rate koff = 100 and each association constant K =

kon=koff .

For mRNAs with multiple binding sites for a type of microRNA, any binding/unbinding order is allowed, but

complexes that differ only in the positions of sites bound by their microRNAs are grouped together into

one variable, which represents the total concentration of all forms of the complex. This is accomplished

by multiplying the single-microRNA association rate by the number of remaining free sites and multiplying

the dissociation or microRNA degradation rate by the number of occupied sites.

The reactions, rate functions, and parameters in each model are listed in the supplementary information.

Antimony model code for use with the Tellurium modeling package (Choi et al., 2018) can be found in the

associated GitHub repository. All variables and parameters are dimensionless quantities (Nordick et al.,

2022).

For simulation, the set of reactions is converted to a system of ODEs, one for each RNA, protein, or com-

plex. A species’ rate of change is the sum of the rates of the reactions that produce or consume it, weighted

by the net change in the species’ amount caused by the reaction. As an example, the ODEs for the one-

microRNA MMI4 Model (derived from Table S1) are

dR

dt
= kR � R � 4konRr + koffC1 + b1gC1

dr

dt
= kr � gr +

X4

n = 1

ð � ð5 � nÞkonCn� 1r + nkoffCn + nanCnÞ (Equation 5)

dCn

dt
= ð5 � nÞkonCn� 1r � ð4 � nÞkonCnr � nkoffCn + ðn + 1ÞkoffCn+1 � anCn

� nbngCn + ðn + 1Þbn+ 1gCn+ 1 for n˛ ð1; 2; 3; 4Þ;
where R is the concentration of free mRNA, r is the concentration of free microRNA, and Cn is the total

concentration of complexes with n microRNA molecules bound to an mRNA molecule except C0 := R

and C5 := 0.

One reaction can contribute terms to multiple species’ rate-of-change equations. The regulated mRNA

decay reactions, for example, which occur at rate anCn, destroy one unit of complex Cn but produce n units

of free microRNA r, so they contribute a �anCn term to dCn=dt and a +nanCn term to dr=dt.
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Testing model parameterizations for multiple attractors

Each parameterized system was simulated starting from at least 100 initial conditions which span at least

five powers of 5 in a log-uniform manner, drawn from a Sobol quasirandom sequence (Bratley and Fox,

1988). The initial concentration of each free RNA species was determined by one dimension of the Sobol

hypercube, protein initial concentrations were set to their coding mRNA’s initial concentration times the

translation rate, and other species’ initial concentrations were zero. Deterministic simulation with Tellu-

rium (Choi et al., 2018) proceeded for at least 100 time units up to a maximum of 1,000 time units until

the system reached a steady state as determined by the 2-norm of the derivatives vector falling below

10� 7. Simulation endpoint concentration vectors a and b were considered equivalent attractors if

their difference’s 2-norm ja � bj2 was less than 10� 4 times the number of species n, or if ja � bj2 <
0:3minðjaj2; jbj2Þ< 0:01n.

Numerical bifurcation analysis

Bifurcation diagrams were created with the AUTO2000 plugin for Tellurium 2.2.0 (Choi et al., 2018). For bi-

furcations with respect to transcription rate, continuation proceeded backwards from a high monostable

signal value. For bifurcations with respect to degradation rate, continuation proceeded forward from a

low degradation rate and was restarted from a different steady state when needed to follow all attractors.

Stochastic simulation and quasi-potential landscape

We performed stochastic simulations for the modified 3-TF model with various microRNA binding sites by

adding an independent multiplicative noise term to each ODE. Divergence arising from negative concen-

trations was reduced by applying the Zero-Reaction remedy (Chen and Cao, 2019). Starting with a popu-

lation of an equal number of cells at each deterministic attractor, we solved the stochastic ODEs at a noise

intensity of 0.2 for 200 time units using DifferentialEquations.jl (Rackauckas and Nie, 2017).

To visualize the epithelial-mesenchymal gene expression space in which the stochastic system fluctuates in

the long term, the concentrations of Zeb1 and E-cadherin protein were extracted for each simulated cell

at intervals of 5 time units starting at time 150. This pair of molecules were chosen because they were

very widely studied and are considered core effectors/regulators of EMT (Celià-Terrassa et al., 2018; San-

chez-Tillo et al., 2010; Wellner et al., 2009). The concentrations of protein-coding genes are readily inferred

from RNA-sequencing data. By contrast, microRNA concentrations are more difficult to obtain. To

avoid distortions from temporarily negative concentrations, timepoints with either component less than

10� 7 were not used. Quasi-potential landscapes (Li and Wang, 2014) were rendered with potential

UðxÞ = � log PSðxÞ, where PSðxÞ is the probability density function computed by scikit-learn’s

2-dimensional Gaussian kernel density estimate (Pedregosa et al., 2011) of bandwidth 0.14 on the

base-2 logarithm of E-cadherin protein and the base-10 logarithm of Zeb1 protein, as Zeb1’s expression

was more variable under the parameter values tested.

Single-cell RNA-sequencing data origin

We analyzed two datasets for validating some predictions from our final model that includes miR-101.

Single-cell RNA-sequencing data for TGF-b induced EMT in A549 lung epithelial cell line (Cook and Van-

derhyden, 2020) (GSE147405), and in MCF10A breast epithelial cell line (Panchy et al., 2022) (GSE213753)

were obtained from NCBI Gene Expression Omnibus (accessions in key resources table). The A549

cells were treated with a single dose of TGF-b and their data have time labels of 0-7 days. TheMCF10A cells

were treated with multiple doses (0-200 p.m. chosen for this work) of TGF-b for 14 days.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parameter sampling for multistable systems

The likelihood of the single-microRNAMMI4Model to generate multiple attractors was tested by sampling

all regulated degradation factors independently from a log-uniform distribution on ½2� 3; 24� (a range

consistent with previous experiments and models (Eichhorn et al., 2014; Nordick et al., 2022)), the micro-

RNA association constant from a log-uniform distribution on ½103; 106�, and the microRNA transcription

rate from a log-uniform distribution on ½2� 4;21�. The conditions for the two-microRNA MMI4 Model to pro-

duce multiple attractors were investigated by sampling from the same parameter regions independently

for each microRNA, discarding systems with at most two attractors. Kernel density estimates were

computed by SciPy (Virtanen et al., 2020) with standard settings.
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When simply searching for example parameter sets in other models rather than characterizing the param-

eter space, subregions that provided computational efficiency were selected empirically from plausible re-

gions similar to previous work (Nordick et al., 2022); all sampling distributions and parameter sets of inter-

est for each model are listed in supplementary tables.

Parameter sensitivity analysis

To determine howmuch a parameter must change to abolish highmultistability, the system was repeatedly

re-simulated as described above. First, the original parameter value was doubled or halved up to twelve

times until the perturbed parameter set had fewer attractors than the original. To find the precise limit,

a binary search was then conducted between the last many-attractor and first fewer-attractor power of 2.

The binary search was terminated when the base-2 logarithms of the narrowed parameter value endpoints

differed by less than 0.0001.

To address derailment of the binary search from numerical imprecision in attractor detection, values 1%

above and below each endpoint were re-simulated for verification. If a value inside the many-attractor

range was found to lack an attractor, or if a value outside the range was found to still have many attrac-

tors, the limit search process was repeated with more stringent integrator settings. The initial time was

increased to 500 units, the maximum time was increased to 4000 units, and the initial timestep was

decreased to 0.25. Parameter limits that still failed verification, i.e. could not be determined to within

1%, were discarded.

Enumeration of instances of network topologies

We examined a previously curated list of core EMT genes (Tan et al., 2014). Among them, 232 were classi-

fied as E genes and 191 as M genes. In addition, we used a list of 133 microRNAs, each with experimental

evidence supporting its role in EMT (Cursons et al., 2018). With these lists and the TargetScan program for

microRNA binding site prediction (Agarwal et al., 2015), we first identified 46 EMT genes regulated by a

total of four binding sites of one or two EMT microRNAs, i.e. the MMI4 Models. Including those, we also

identified 93 EMT genes matching the MMI2 Model.

For the topologies that combine transcriptional and posttranscription regulation, the TRRUST2 network

(Han et al., 2018) and transcriptional subgraph of the OmniPath network (Türei et al., 2016) as preprocessed

for HiLoop (Nordick and Hong, 2021) were added together except for regulations given opposite signs by

the two networks. The existence of a regulatory path from each EMT MMI2 gene to every other, up to the

specified path length of 1 or 5, was tested in the combined transcriptional network using NetworkX (Hag-

berg et al., 2008). Each ordered pair with such a directed path was considered an instance of the Chained-

MMI2 topology.

The list of EMTMMI2 genes that, directly or indirectly via the combined network, transcriptionally regulates

each EMT gene was similarly obtained. If an unordered pair of EMT MMI2 genes regulated the same EMT

target gene without common dependencies on any intermediate genes, the partially ordered triple of reg-

ulators and target was considered an instance of the Co-targeting-MMI2 topology. The condition of no

common intermediates avoids counting subnetworks in which oneMMI2 gene regulates the target through

the otherMMI2 gene, an arrangement whichmay have different dynamics, and non-minimal subnetworks in

which the target is downstream of an already co-targeted gene.

Note that these distinct instances are only based on different combinations of EMT genes. Considering

combinations of EMT-associated microRNA binding sites would yield much larger numbers of instances.

Single-cell RNA-sequencing data analysis

The Uniform Mani-fold Approximation and Projection (UMAP) was used to examine the overall distribu-

tions of cells for both datasets. Z-scores were computed for each gene across each dataset. Represen-

tative EMT genes were used to visualize the progression of EMT via their expression across time points

and doses. For genes that were poorly detected (ZEB1 and CDH1 in A549 cells, and ZEB1 in MCF10A

cells), only cells with non-zero expression were used for this visualization. To infer microRNA expression

levels, we computed the mean expression levels of the genes potentially targeted by miR-200b/c, and

miR-101 respectively. We obtained lists of predicted target genes from TargetScan (Agarwal et al.,

2015). To avoid the trivial case in which the mean target gene expression was merely driven by ZEB1
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(regulated by the microRNAs in our model) and its downstream effector gene VIM, we excluded these

two genes from this inference analysis. After the exclusion, miR-101 and miR-200b/c had 954 and 1194

predicted target genes respectively. We normalized the mean target gene expression by subtracting

the overall mean expression for each time point or dose from the target gene expression.

ll
OPEN ACCESS

18 iScience 25, 105224, October 21, 2022

iScience
Article


	ISCI105224_proof_v25i10.pdf
	Cooperative RNA degradation stabilizes intermediate epithelial-mesenchymal states and supports a phenotypic continuum
	Introduction
	Results
	Cooperative RNA degradation generates intermediate EMT states in the absence of transcriptional feedback
	Modular and emergent synergies between post-transcriptional and transcriptional networks in generating EMT states
	A multiple-feedback-mechanism EMT network generates a 7-state EMT continuum

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Model construction
	Testing model parameterizations for multiple attractors
	Numerical bifurcation analysis
	Stochastic simulation and quasi-potential landscape
	Single-cell RNA-sequencing data origin

	Quantification and statistical analysis
	Parameter sampling for multistable systems
	Parameter sensitivity analysis
	Enumeration of instances of network topologies
	Single-cell RNA-sequencing data analysis





