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ABSTRACT

Periodic gene expression dynamics are key to cell
and organism physiology. Studies of oscillatory
expression have focused on networks with intu-
itive regulatory negative feedback loops, leaving un-
known whether other common biochemical reac-
tions can produce oscillations. Oscillation and noise
have been proposed to support mammalian progen-
itor cells’ capacity to restore heterogenous, multi-
modal expression from extreme subpopulations, but
underlying networks and specific roles of noise re-
mained elusive. We use mass-action-based models
to show that regulated RNA degradation involving as
few as two RNA species––applicable to nearly half
of human protein-coding genes––can generate sus-
tained oscillations without explicit feedback. Diverg-
ing oscillation periods synergize with noise to ro-
bustly restore cell populations’ bimodal expression
on timescales of days. The global bifurcation orga-
nizing this divergence relies on an oscillator and
bistable switch which cannot be decomposed into
two structural modules. Our work reveals surpris-
ingly rich dynamics of post-transcriptional reactions
and a potentially widespread mechanism underlying
development, tissue regeneration, and cancer cell
heterogeneity.

GRAPHICAL ABSTRACT

INTRODUCTION

Gene expression variations caused by non-genetic factors
are widely observed in mammalian cells (1–5). These vari-
ations have functional consequences such as altered dif-
ferentiation potentials of stem cells and drug resistance
of cancer cells (1–3,6,7). For progenitor cells that ex-
hibit multimodal expression patterns, a small subpopula-
tion with a relatively homogenous expression profile recov-
ers the parental population’s heterogeneity of individual
gene products after several days or longer (2,8–10) (Fig-
ure 1 box). Although stochasticity in transcriptional ac-
tivities can cause expression variation and associated cell
state changes (3,11), this type of noise influences expression
at a much faster timescale (minutes) than the fluctuations
required to achieve observed cell state transitions (days)
(1,2,8,12,13). It was proposed that deterministically oscil-
latory dynamics may also be necessary for the recovery of
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Figure 1. Questions related to dynamics of heterogeneity restoration process of expression patterns in progenitor or cancer cells. The study aims to provide
insights into three questions: 1) Is there a widespread and hitherto unknown regulatory network structure that can generate oscillatory dynamics of
gene expression at timescales of days? 2) How do oscillation and stochasticity work together to drive restoration of heterogeneity from a subpopulation
with relatively homogeneous expression patterns? 3) How can the theories of multistability and oscillation be reconciled in the context of heterogeneity
restoration and multimodal distribution of gene expression?

heterogeneity (9,14,15), but instances of transcriptional net-
work structure (e.g. transcriptional negative feedback loop)
supporting the observed dynamics have not been found
experimentally. Furthermore, how stochasticity works to-
gether with oscillation to recover cellular heterogeneity re-
mains elusive. Finally, the multimodality of the expression
patterns suggests the possibility of multistability (i.e. co-
existing point attractors, Figure 1 top right) (14,16). While
both oscillatory and multistable systems allow slow cell
state changes, they seem to contradict each other in terms
of the underlying regulatory networks (17), and it is unclear
which mechanism restores the heterogeneous patterns more
robustly.

Most human mRNA transcripts are subject to
microRNA-mediated regulation at the post-transcriptional
level (18). Earlier findings indicated that microRNAs
reduce gene expression noise through feed-forward loops
(19). More recently, however, it was shown that microRNA
can also increase the variability in gene expression via
more basic molecular mechanisms such as triggering
mRNA degradation (8,20,21). In particular, the loss of
microRNAs led to significantly reduced expression het-
erogeneity in embryonic stem cells (8), and the lack of a
microRNA binding site on a target mRNA dampened the
oscillation of the target’s expression in neural progenitor
cells (22). These observations suggest versatile dynamics
of microRNA-mRNA reaction networks and potential
functions in maintaining heterogeneity in progenitor cells.
Recent theories postulated that these reaction networks can
produce positive-feedback-like dynamics such as bistability
(23,24), but it remains unclear whether more diverse types
of dynamical features, such as oscillations, can be generated
by the RNA-centric interactions.

Based on recent data of mRNA-microRNA interactions
through multiple microRNA binding sites, we used mass-

action kinetics to build mathematical models for simple
post-transcriptional reaction networks. These networks po-
tentially describe the dynamics of transcripts from nearly
half of human protein coding genes. Through computa-
tional analysis of these common reaction networks, we iden-
tified regions of biologically plausible kinetic rate constants
that give rise to sustained oscillations, despite the apparent
absence of any explicit feedback loop typically considered
necessary for oscillation. We found that the regions corre-
sponding to oscillation and bistability overlap, which not
only confers dual functions to the systems, but also allows
excitability and abruptly diverging period of oscillations.
The emergent dynamics provide a new explanation for the
experimentally observed heterogeneity and multimodality
regeneration effects of microRNAs on timescales of days
(8,20). Remarkably, we found that oscillation and bistabil-
ity require the same simple set of molecular species, which
revealed a dual-function network without structural mod-
ularity. Our results uncover surprisingly rich dynamics of
post-transcriptional reaction networks widespread in biol-
ogy and a previously underappreciated mechanism for re-
generating multimodal gene expression in cell populations.

MATERIALS AND METHODS

Model construction

All mRNA-microRNA models in this study are based on
mass-action kinetics. The first model considers an mRNA
with one microRNA binding site (the MMI1 Model), and
the other models consider an mRNA with two microRNA
binding sites (the MMI2 Models). The ordinary differen-
tial equation (ODE) models were nondimensionalized by
scaling the variables and parameters with the degradation
rate constant of the mRNA and the synthesis rate constant
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of the microRNA. One time unit corresponds to approxi-
mately 1.44 × t1/2 where t1/2 is the half-life of the mRNA.
For visualizing dynamical systems underlying the models,
we applied the total quasi-steady state assumption (tQSSA)
(25–27) and reduced each model to two ODEs. The full
models were used in all simulations and bifurcation analy-
ses. The 2-dimensional models were used to construct phase
planes and the determinant-trace plots for their Jacobian
matrices. The two versions of the model gave consistent re-
sults.

Parameter sampling and numerical bifurcation analysis

To investigate the possible dynamical features of the mod-
els, 105 parameter values were randomly selected for each
model. The distributions of the parameters were estimated
with known ranges of biologically plausible values (see Sup-
plementary Data Section 1.5 and Supplementary Table S1).
Synthesis rate constant of mRNA σR was used as the con-
trol parameter for numerical bifurcation analysis, which
quantified the steady state signal-response relationship in
the range 0 < σR < 25. Local bifurcation points were de-
tected using Tellurium (28). Limit cycles were followed us-
ing PyDSTool (29), which further provided the informa-
tion for global bifurcations. Spiral sinks were detected by
identifying complex eigenvalues of Jacobian matrix at the
scanned stable steady states numerically.

Algebraic analysis

Using the Chemical Reaction Network Toolbox and its un-
derlying theory (30), we determined the possibility of ob-
taining one or more positive steady state for each model.
The stability of the steady state in models that admit only
one positive steady state with any positive rate constants
was determined by the Routh-Hurwitz Stability Criterion
(31,32).

Estimation of occurrences of mRNA-microRNA models

Predicted microRNA-mRNA binding sites from Tar-
getScan were used to determine possible occurrences of
structures in which one mRNA molecule binds one or two
microRNA molecules (33). Protein-coding genes that have
one microRNA binding site were used to estimate the oc-
currence of the structure of the MMI1 Model: 2554 genes.
For the MMI2 Models, we used protein coding genes that
have more than one microRNA binding site: 10483 genes.
We further used miRTarBase to obtain the number of genes,
12616, that can be targeted by two distinct microRNA fam-
ilies with experimental evidence supporting the microRNA-
RNA binding (34). Among them, 8420 genes contain more
than one microRNA binding site predicted by TargetScan.
Although TargetScan may have many false positives, it is
known that false negatives also exist. For example, Tar-
getScan does not include the experimentally validated tar-
geting of Nanog by miR-296 at two binding sites (35).

Estimation of occurrences of transcriptional negative feed-
back loops

Negative transcriptional feedback loops were enumerated
using HiLoop (36) on the full network derived from the TR-

RUST version 2 database (37). Limiting loops to at most 3
genes for comparable complexity with the MMI Models, 52
negative feedback loops were found. Of the 2862 genes in
the network, 62 were involved in at least one such negative
feedback loop.

Stochastic simulation and quasi-potential landscape

We performed stochastic simulations for the MMI2 Model
with two binding sites for the same microRNA using either
additive or multiplicative noise in the ODEs. To select a cell
state with a representative extreme expression pattern, we
first solved the ODEs deterministically with 400 initial con-
ditions and selected the state with either the lowest or the
highest level of RT in the period 40 < t < 200. For one sim-
ulation of a cell population, we used this state as the initial
conditions for 500 cells, and we solved the stochastic ODEs
for another 200 time-units (38). Noise levels and other pa-
rameters were changed to examine the robustness of the bi-
modality regeneration. The simulation results were subse-
quently used to construct quasi-potential landscapes with
potential U (x) = − log PS(x), where PS(x) is the probabil-
ity density function at the stationary phase (t > 100) (39).
To consider intrinsic noise alone in an accurate manner, we
implemented an additional form of stochastic simulation
based on the Gillespie algorithm and propensity functions
derived from mass-action kinetics. Using simulations of 200
cells, we examined the consistency between the stochastic
ODEs and the Gillespie algorithm under different levels of
noise and signals σR. The stochastic model with additive
noise was also extended to capture the dynamics of cell pro-
liferation (Section 2.1.10 in Supplementary Data).

Note that the Gillespie algorithm is accurate for mass-
action kinetics describing elementary reactions, but not
more phenomenological descriptions of reactions (40,41).
All models in this study are based on mass-action kinetics,
except for a repressilator model used for comparison (42).
For the repressilator model, we only used stochastic ODEs
for simulation. We used a mass-action-based negative feed-
back model (43) for additional comparison between our
models and previously known oscillators. For accurate and
straightforward implementation, we used the full Gillespie
algorithm, rather than tQSSA-based approaches, which in-
volve more sophisticated approximation (44). This is consis-
tent with ODE simulations and bifurcation analysis which
primarily consider the full mass-action systems.

Statistical analysis

Bimodality of cell populations was tested by comparing the
Bayesian Information Criterion of a one-Gaussian fit of
mRNA levels to a two-Gaussian fit. The two-Gaussian mix-
ture models were further tested for distinguishability of the

modes (45), requiring |μ1 − μ2|/
√

(σ 2
1 + σ 2

2 )/2 > 2.

RESULTS

An mRNA with one microRNA binding site generates spiral
sinks but not oscillation or bistability

We used mass action kinetics to describe the dynamics
of an mRNA and a microRNA with ordinary differential
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equations (ODEs). In the first model, we considered an
mRNA with one binding site for the microRNA (the MMI1
Model, Figure 2A). The two molecular species can bind to
each other and form a complex. Each species is produced
through transcription and is degraded both in its unbound
form and in the complex. We simplified the mass-action-
based model (see Supplementary Data Section 1) into the
dimensionless form

d R/dt = σR − κon Rr + κoffC − R + βγ C

dr/dt = 1 − κon Rr + κoffC − γ r + αC (1)

dC/dt = κon Rr − κoffC − αC − βγ C.

In this model, the three variables R, r and C represent the
dimensionless (scaled) concentrations of unbound mRNA,
unbound microRNA, and mRNA-microRNA complex re-
spectively. The parameters (Greek letters) were also scaled,
and each is related to a biologically meaningful parameter.
σR represents the transcription rate constant of mRNA and
can be considered a signal input. κon represents the asso-
ciation rate constant. κoff represents the dissociation rate
constant. The scaled dissociation constant K = κoff /κon.
The degradation rate constant of unbound mRNA and
the microRNA production rate constant were scaled to 1
(see more details in Supplementary Data Section 1.1). The
degradation rate constant of unbound microRNA is repre-
sented by γ . We define α and β as regulated degradation
factors (RDFs). α represents how fast mRNA is degraded
in the complex relative to its unbound form, and β is the cor-
responding factor for microRNA. These two RDFs are im-
portant because the gene regulatory function of microRNA
primarily depends on the target mRNA degradation upon
binding (46), and similarly, the target mRNA can alter the
degradation rate constant of the mRNA-bound miRNA
(47). Here, we assumed that mRNA and microRNA are de-
graded independently in the complex, which is supported by
previous observations (47–49). Equation 1 can be simplified
with representation of rapid chemical processes (e.g. bind-
ing and unbinding) using algebraic equations and change of
variables to RT and rT, which represent the total scaled con-
centrations of the mRNA and the microRNA respectively
(26,27) (see Supplementary Data Section 1.2).

To explore the possible dynamical behaviors of the MMI1
Model, we randomly generated 105 parameter sets with bi-
ologically plausible values. Each parameter value was cho-
sen from a range covering at least two orders of magni-
tude (see Section 1.5 in Supplementary Data for estimation
of each parameter). Through numerical bifurcation anal-
ysis with respect to signal σR, which shows steady state
signal-response relationships, we found that each parame-
ter set gave rise to a single stable steady state, i.e. point at-
tractor (Figure 2B shows two representative signal-response
curves). Nonetheless, we found that 13.4% of parameter sets
generated extremely transient oscillations in narrow ranges
of σR (Figure 2B-C, Supplementary Figures S2 through S4).
In the deterministic systems studied here, we define sus-
tained oscillation, abbreviated oscillation, as limit cycle os-
cillation, which is a long-term periodic dynamical pattern.
In contrast, damped oscillation is transient, characterized
by a spiral trajectory which eventually converges to a point

attractor, i.e. a spiral sink (Figure 2C) (50). Regardless of
whether the damped oscillation was present, the response
curves with respect to σR show that with a single binding
site, the microRNA enabled a threshold at which the un-
bound mRNA concentration starts to increase significantly
(Figure 2B, Supplementary Figure S3), consistent with pre-
vious experimental data and models (51). Furthermore, the
presence of the microRNA only gave rise to moderate (<
10-fold) changes of the total mRNA concentrations (Sup-
plementary Figure S3). This is consistent with the com-
monly observed moderate effects of microRNA on protein
production, showing that the selected values of RDFs and
other parameters in our models are realistic. Interestingly,
the damped oscillations primarily occurred near the thresh-
olds (estimated as the level of σR at R = 0.1, denoted by
σ̂R) of the unbound mRNA activation (Supplementary Fig-
ure S3A) and required negatively correlated RDFs (Figure
2D). In general, the damped oscillations did not strongly
depend on the choice of specific values for individual pa-
rameters (Supplementary Figure S4).

We next used algebraic approaches to corroborate the
computational results. We found that the MMI1 Model
gives rise to a single stable steady state with any arbitrary
combination of positive rate constants (Sections 1.3 and
1.4 in Supplementary Data, Supplementary Figure S1),
suggesting that some additional structural component (i.e.
molecular species) is required to achieve oscillation.

Multiple microRNA binding sites enable sustained oscillation
and bistability without explicit feedback

In this section, we discuss several variants of the MMI2
Model that describes an mRNA with two binding sites for
one or two microRNAs, a biological system more com-
mon (see Methods) than the one captured by the MMI1
Model. The inclusion of additional binding sites permits
several possibilities in terms of the binding reactions, but
we first considered a very basic mechanism of binding: one
microRNA binds to the two sites independently with equal
affinities. This assumption gave rise to two 1:1 complexes,
each with a microRNA molecule bound to the first site (Site
1) or the second site (Site 2) on the mRNA, respectively
(Figure 3A). Because these two complexes were assumed
to have identical kinetic properties, their concentrations are
always equal in a deterministic system. We therefore used a
single state variable C1 to describe the concentration of each
complex. Under this assumption, a 2:1 complex, with con-
centration denoted by C2, is formed when the microRNA
binds to either 1:1 complex. We named this version of the
MMI2 Model with symmetrically sequential binding the
MMI2-SSB Model, which is given by

d R/dt = σR − 2κon Rr + 2κoffC1 − R + 2β1γ C1

dr/dt = 1 − 2κon Rr + 2κoffC1 − 2κonC1r

+2κoffC2 − γ r + 2α1C1 + 2α2C2 (2)

dC1/dt = κon Rr − κoffC1 − κonC1r + κoffC2 − α1C1

−β1γ C1 + β2γ C2

dC2/dt = 2κonC1r − 2κoffC2 − α2C2 − 2β2γ C2.
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Figure 2. Dynamics of the MMI1 Model. (A) Left: illustration of reaction network of the MMI1 Model. Purple icon represents mRNA. Orange icon
represents microRNA. Horizontal arrows represent degradation. Straight vertical arrows represent synthesis. Curved arrows represent binding. Right:
eight chemical reactions associated with the MMI1 Model, which describes the dynamics of each molecular species with the law of mass-action (equation
1 and Supplementary Data Section 1). UTR, untranslated region. (B) Two representative signal-response curves (black and gray) showing steady state
levels of R in response to transcription rate constant σR. Green arrows indicate the type of these steady states: straight arrows show stable nodes and spiral
arrow shows spiral sinks. Blue curve shows the microRNA-free response for both parameter sets. (C) Time-course simulation showing transient oscillation
near a spiral sink (parameter set 1). One time unit is approximately 1.44 × t1/2 where t1/2 is the half-life of the mRNA. (D) Distribution of the parameter
sets with spiral sink steady state (yellow, e.g. parameter set 1) and those without (gray, e.g. parameter set 2) in the space of two representative parameters
(RDFs). Callouts illustrate the two representative parameter sets (same as those in B) with degradation rate constants represented by arrow lengths. Only
the values of β differ between the two sets. Marginal distributions are shown in stacked bars.

Similar to the MMI1 Model, this model can be reduced
to two dimensions representing ‘slow’ variables RT and rT
(see Supplementary Data Section 2.1.3). Strikingly, when
we used the sampling strategy described earlier, we found
many biologically plausible parameter sets that produced
sustained oscillations at some σR (9.4% of the 105 sets;
Figure 3B-C, Supplementary Figures S5-S7). In this sce-
nario, the system undergoes a Hopf bifurcation that leads
to limit cycle oscillations at intermediate levels of σR (Fig-
ure 3B blue shade and top right phase plane). Further in-
crease of σR gives rise to another Hopf bifurcation point
which marks the approximate upper bound in the σR axis
for limit cycle oscillations. In the example shown in Fig-
ure 3B, the Hopf bifurcation point at higher σR is subcrit-
ical, producing both an unstable limit cycle (dashed blue

curve) and a stable limit cycle (solid blue curve) that appears
abruptly.

With representative parameter sets, damped oscillations
occurred at high levels of σR (Figure 3B yellow shade and
lower right phase plane). Unlike the extremely transient os-
cillations with the MMI1 Model, these damped oscillations
can have significantly long durations (Figure 3C) and can
be observed in wide ranges of parameter values including
σR (Figure 3E, Supplementary Figure S5). In the limit cy-
cle oscillations, dramatic variations in fold change of un-
bound mRNA and microRNA were observed (Figure 3B,
C purple and orange), whereas moderate (≈3-fold) changes
of total mRNA occurred, again confirming the moderate
overall effect of microRNA (blue curves in Figure 3B phase
planes and Figure 3C). With the parameter set that enabled
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Figure 3. Dynamics of the MMI2-SSB Model. (A) Left: illustration of reaction network of the MMI2-SSB Model. Purple icon represents mRNA. Orange
icon represents microRNA. Right: twelve chemical reactions associated with the MMI2-SSB Model in equation 2, which describes the dynamics of each
molecular species with the law of mass-action. (B) Left: bifurcation diagram showing levels of R in response to transcription rate constant σR. Green arrows
illustrate the type of these steady states: straight arrow shows stable node, spiral arrow shows spiral sinks, and circulating arrow shows limit cycles. Blue
shade: limit cycles’ inner basins of attraction. Right: phase planes (constructed with the 2D version of the MMI2-SSB Model) show sustained (σR = 0.5,
top) and transient oscillations (σR = 1, bottom). Open circle represents unstable steady state. Blue and red curves are nullclines. Green curves show
representative solutions. Other parameter values: K = 0.001, γ = 0.25, α1 = β1 = 1, α2 = 12, β2 = 7. A basal synthesis rate constant σ 0

R = 3.1 was
added to the ODE for R. (C) Time-course trajectories for the two scenarios shown in B. One time unit is approximately 1.44 × t1/2 where t1/2 is the half-
life of the mRNA. (D) Yellow histogram shows the distribution of the spiral sink steady states relative to the position of the threshold transcription rate
constant σ̂R at which R = 0.1. Blue histogram shows the distribution of Hopf bifurcation points. (E) Left: distribution of the parameter sets with various
types of steady states obtained with bifurcation analysis with respect to σR in the space of the RDF ratios. Callouts show representative parameter sets with
arrow lengths representing degradation rate constants (Set 1 was used for results shown in B and C). Phase plane shows a transient oscillation obtained
with Set 2. Marginal distributions are shown in stacked bars. (F) Left: bifurcation diagram showing the steady states of unbound mRNA and total mRNA
with respect to σR. Solid curves: stable steady states. Dashed curves: unstable steady states. Right: illustration of Set 3 whose behavior is shown. Parameter
values: K = 0.001, γ = 2, α1 = 1, β1 = 0.5, α2 = 4, β2 = 0.1.

sustained oscillation, we found that the period of the os-
cillation was approximately 10 times of the half-life of the
mRNA (Figure 3C), which corresponds to at least one day
for typical mammalian mRNAs (52). Nonetheless, a wide
range of periods for biological rhythms might be obtained
by the model given the wide distribution of mRNA half-
lives (52). More importantly, the period increased steeply

when the signal approached the Hopf bifurcation near the
activation threshold (Figure 3B red). We will examine the
significance and the source of this phenomenon in a later
section.

With an estimated threshold of 0.1 units of unbound
mRNA, we found that many Hopf bifurcation points were
located near the activation threshold, whereas the damped
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oscillations primarily appeared in the high σR region (Fig-
ure 3D). The Hopf bifurcation points were distributed very
widely in the space of all other parameters (Supplementary
Figure S6). To illustrate the regions corresponding to these
bifurcations, we focused on a phase space of RDF ratios for
the two RNAs, i.e. α2/α1 and β2/β1 (Figure 3E). These ra-
tios represent how fast the mRNA and the microRNA are
degraded in the 2:1 complex relative to their degradation
rate constants in the 1:1 complex, and can be viewed as a
functional cooperativity, or synergy, between the two mi-
croRNA binding sites. We use the term functional coopera-
tivity here to distinguish it from binding cooperativity that
often describes the enhanced or reduced binding affinity of
a second site upon the binding to the first site. Previous ob-
servations suggested that in most cases the two sites have
a positive functional cooperativity in terms of the degrada-
tion rate constants of mRNAs, and in fact the α2 : α1 ratios
are often equal to or greater than 2 (53). The RDF ratio for
microRNA (β2/β1) has not been systematically character-
ized, but we permitted both positive and negative coopera-
tivities. Very interestingly, most Hopf bifurcations and their
associated oscillations appeared in a region where RDF ra-
tios (α2/α1 and β2/β1) are both high (e.g. Parameter Set 1
in Figure 3E), whereas a small fraction of Hopf bifurcations
were observed with low RDF ratios (Figure 3E lower left re-
gion). Damped oscillations were observed in 41.8% of pa-
rameter sets (Figure 3E yellow and orange), including areas
of RDF ratio space where Hopf bifurcations were absent
(e.g. Parameter Set 2 and phase plane in Figure 3E).

In addition to oscillations, we found that a large num-
ber of parameter values (31.7%) generated bistable systems
characteristic of biological switches (e.g. Parameter Set 3 in
Figure 3E-F), a conclusion consistent with previous studies
(23,24). Like oscillations, the bistable switches involved dra-
matic changes of unbound mRNA concentration and mod-
erate changes of total mRNA concentrations (Figure 3F).
Bistable switches with respect to signal σR were observed
only if the inequality

α2/α1 > 2β2/β1 (3)

was satisfied (Figure 3E, boundary between light blue and
dark blue regions).

We found that the two parameter regions corresponding
to oscillation and bistability respectively had a significant
overlap in the space of RDF ratios (Figure 3E, dark blue),
and we will explore this result in a later section. In addi-
tion to the RDF ratios, we found that the existence of the
sustained oscillations depends on the choice of γ . In our
simulations, the median of the distribution for γ was cho-
sen to be 0.25, which is supported by previous experimental
studies (54). We observed that the oscillations were obtained
with high RDF ratios (high α2/α1 and high β2/β1) when γ
was low, whereas oscillations with low RDF ratios required
high γ (Supplementary Figure S7). Nonetheless, many bi-
ologically plausible values of the parameters in the MMI2-
SSB Model, including the median values of distributions for
γ and K in our sampling experiments, gave rise to bistability
and oscillation (Supplementary Figure S7). In addition, we
found that coregulated transcription of microRNA and its
target significantly expanded the parameter region for limit
cycles (Supplementary Figure S8). This type of coregulation

may be achieved by localization of a microRNA gene in the
intronic region of its target gene, e.g. mir-196 and its target
Hoxb7 (55).

The dynamical profile shown in Figure 3B provides a
possible explanation for recent data that showed perplex-
ing roles of microRNAs: Schmiedel et al. and Wei et al.
found that microRNA reduces variability of gene expres-
sion for lowly expressed genes but increases the variability
for highly expressed genes (20,21). While the increased vari-
ability could be explained by additional stochasticity intro-
duced by microRNA-mediated regulations (20), our analy-
sis suggests that the observed variability of highly expressed
genes controlled by microRNAs could alternatively be due
to the spiral nature of the steady state, which may also be re-
lated to functional rhythms. Nonetheless, the observation of
limit cycle oscillations in the MMI2-SSB Model is surpris-
ing because the network structure does not contain any ex-
plicit negative feedback loop, a structure considered a nec-
essary condition for biological oscillators (56). While it is
remarkable that a simple system containing so few molecu-
lar species can possess very diverse dynamical features (e.g.
oscillation and bistability), which can arise even without ap-
parent appearance of feedback loops, we inferred implicit
feedback in the MMI2-SSB Model from representative nu-
merical values of rate constants (Supplementary Figure S9).

We next asked whether the observed oscillation and bista-
bility were sensitive to the assumption that the two binding
sites were identical in terms of kinetic properties, or the fact
that the two 1:1 complexes were described by a single vari-
able C1 in the model. We therefore considered a modified
MMI2 Model in which the binding of microRNA to Site 2
on mRNA requires the binding of Site 1. This asymmetri-
cally sequential binding model, named MMI2-ASB Model,
now contains a unique 1:1 complex corresponding to the
first binding site occupied by the microRNA (Figure 4A).
We found that this model generated results similar to the
MMI2-SSB Model in terms of the parameter regions for
oscillation and bistability: 8.4% of parameter sets gave rise
to Hopf bifurcation and oscillations, whereas 29.6% of pa-
rameter sets produced bistable switches (Figure 4B, Supple-
mentary Figure S16). Because the two binding sites in the
MMI2-ASB Model were assumed to be distinct, we asked
whether the difference in the binding affinity (described by
the dissociation constant K) can influence the emergence of
oscillation and bistability. To test this, we randomly chose
K1 (the scaled dissociation constant for Site 1) as before and
set K2 (for Site 2) equal to K1 multiplied by a constant.
We found that positive binding cooperativities (K2 < K1)
had a negative effect on producing oscillation and bista-
bility, whereas negative binding cooperativities (K2 > K1)
(57) enhanced the ability to generate oscillation and bista-
bility until the binding affinity for Site 2 became too low
(Figure 4C). Nevertheless, large numbers of parameter sets
produced spiral sinks, oscillation and bistability over a wide
range of K2 : K1 ratios.

Because cooperativity among multiple microRNAs in
cellular functions has been observed previously (58–60), we
asked whether the conclusions about oscillation and bista-
bility with the MMI2 Models can be extended to the sce-
nario where the two binding sites are recognized by two
different microRNAs. In this dual-microRNA model (the
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Figure 4. Dynamics of the MMI2-ASB and MMI2-DMI Models. (A) Illustration of the MMI2-ASB reaction network. (B) Distribution of the randomly
selected parameter sets for MMI2-ASB with various types of steady states obtained with bifurcation analysis with respect to σR in the space of the RDF
ratios. (C) Percentages of parameter sets with various types of steady states obtained with bifurcation analysis with respect to σR. Parameters were randomly
selected as in B, except for K2 which was equal to K1 multiplied by the indicated factors. (D) Illustration of the MMI2-DMI reaction network. Orange
and pink icons represent two different microRNAs. (E) Distribution of the randomly selected parameter sets for MMI2-DMI with various types of steady
states obtained with bifurcation analysis with respect to σR in the space of the RDF ratios. Parameter values for the two microRNAs are uncorrelated.
(F) Same data as in E shown in the space of ratios between the parameters for the two microRNAs. In B, E and F, marginal distributions are shown in
stacked bars. (G) Examples of MMI2 systems with experimental evidence that support direct binding. These circuits are relevant to neural or epidermal
cell differentiation (61,62), circadian rhythm (63), erythroid differentiation (64), embryonic cell differentiation (35), motor neuron differentiation (23,65),
epithelial-mesenchymal transition (66), T cell differentiation (67,68), spinal cord regeneration (69), and host-pathogen interaction (59) respectively.

MMI2-DMI Model, Figure 4D), two microRNAs were ex-
plicitly described and assumed to each bind only their re-
spective site. As expected, with the assumption that the
two microRNAs have identical rate constants, the MMI2-
DMI Model had similar performance as the MMI2-SSB
Model: 8.7% of parameter sets produced oscillation, and
28.8% of parameter sets produced bistability. With the as-
sumption that the two binding sites have distinct, indepen-
dently chosen dissociation constants and other associated
parameters such as RDFs, we again observed similar results
in terms of the capacity of oscillation (4.9%) and bistabil-
ity (13.8%). These dynamical features did not require high
similarities of the two microRNAs or the two binding sites
(Figure 4E-F).

We have shown that under several different assumptions,
the MMI2 Models generated spiral sinks, oscillation and
bistability in biologically plausible parameter regions. We
asked how many human protein-coding genes may be di-
rectly involved in the MMI Models. With TargetScan, a mi-
croRNA binding site prediction program, we found 2554
human protein-coding genes whose 3’ untranslated regions
contain only one conserved microRNA binding site (the
structure of the MMI1 Model), whereas 10483 genes were
predicted to contain two or more conserved binding sites
(the structures of the MMI2 Models) (33). Furthermore,
according to miRTarBase (34), for 8420 of the genes with

two putative binding sites, there is experimental evidence
that supports two or more microRNA families both tar-
geting each gene, as in the MMI2-DMI Model structure.
We therefore estimate that nearly half of human protein-
coding genes are involved in the structures of the MMI2
Models. In contrast, only 62 genes were predicted to be
involved in transcriptional negative feedback loops with
up to three edges (see Methods). Several examples of the
MMI2-like systems with experimental evidence of RNA
binding and functional significance are shown in Figure 4G
(23,35,59,61–69). While the kinetic rate constants of these
systems have not been measured systematically, it was ob-
served that multiple microRNA binding sites can have ad-
ditive and ultra-additive cooperativities in terms of mRNA
degradation (α2/α1 ≥ 2) (53,58,70). The oscillatory dynam-
ics emerged from the MMI2 Models were flexible in terms
of the type of multi-site cooperativity for microRNA degra-
dation (β2/β1 can be equal to, greater than, or less than 1)
(Figures 3B and 4B, right blue regions).

In the next sections, we first discuss the characteristic
global features of MMI2-driven dynamics beyond saddle-
node and Hopf bifurcations. Next, we explore the possible
biological functions of the microRNA-driven oscillators.
Finally, we test the decomposability of the MMI2 Model
into an oscillator module and a bistable switch module with
distinct molecular compositions.
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Multiple microRNA binding sites enable global bifurcation
and robust regeneration of heterogenous expression

Because the Hopf bifurcations and bistable switches both
occurred near the thresholds of the mRNA activation (Fig-
ure 3D), we hypothesized that the MMI2-SSB Model can
generate global bifurcations with features not captured by
the local Hopf and saddle-node bifurcations. We examined
the parameter sets that gave rise to both Hopf and saddle-
node bifurcations with respect to σR (Figure 3E dark blue)
and found that all of them produced global bifurcations:
about one third of the sets generated saddle-node on invari-
ant circle (SNIC) bifurcations and the rest generated saddle-
loop bifurcations (Figure 5A). During SNIC bifurcation,
a saddle-node bifurcation point collides with a limit cycle
(Figure 5B), giving rise to an abrupt appearance of periodic
trajectories as σR increases gradually (e.g. Figure 5C-D).
The limit cycle eventually disappears through a Hopf bifur-
cation with further increase of σR. The periods of limit cy-
cles diverge dramatically near the SNIC bifurcation point,
going to infinity at the bifurcation point (Figure 5B, red).

Oscillators that appear abruptly with diverging periods
give rise to a particular type of excitability that is known to
govern asynchronous oscillators, Class I excitability (Fig-
ure 5B red bar) (71). We therefore hypothesized that the
period-diverging property can be used to generate hetero-
geneous gene expression pattern in the presence of noise
that may result from stochasticity in transcription. We first
simulated the MMI2-SSB Model with additive transcrip-
tional noise in RNA production and a σR level close to the
SNIC bifurcation point. With an identical initial condition
for multiple simulated cells, we observed asynchronous fluc-
tuations of mRNA levels (Figure 5E). The fluctuations con-
tained both moderate, frequent changes, and dramatic, in-
frequent changes of mRNA levels. We define the latter as
cell state changes. With 500 simulated cells starting from a
low mRNA condition, significant cell state changes at the
population level occurred only after at least one mRNA
half-life (Figure 5F). The gene expression pattern of the
simulated cell population exhibited a damped oscillation
and eventually converged to a bimodal distribution with
stabilized fractions. The recovery of bimodal distribution
from a selected homogeneous population, the slow onset
of cell state transitions, and the nonmonotonic changes of
gene expression distribution were consistent with previous
observations in haematopoietic progenitor cells (2). Fur-
thermore, the role of microRNA in multimodality regen-
eration at the timescale of days is consistent with recent ob-
servations in embryonic stem cells (8). Our results suggest
that the mechanisms underlying these features may include
diverging oscillations with the influence of both SNIC-like
dynamics and stochasticity.

Although SNIC bifurcation was observed in a relatively
small number of parameter sets, its key features extend to
a wide region. Sudden oscillation appearance and rapid pe-
riod change also occurred in scenarios without a SNIC bi-
furcation. For a saddle-loop bifurcation, an unstable limit
cycle is first generated by a Hopf bifurcation as σR increases
(Figure 5G-J). When σR increases further, a saddle point
collides with the limit cycle, resulting in an abrupt disap-
pearance of the limit cycle. Even for an oscillation-enabling

parameter set without any global bifurcation, a limit cycle’s
period, though finite, changes sharply near a Hopf bifurca-
tion point (Figure 3B). Because the SNIC bifurcation or-
ganizes a parameter region that generates limit cycles with
rapid changes in period, we named the mechanism in the
nearby parameter region a diverging oscillator.

Reversible cell state transitions and bimodal distribution
of expression may alternatively be explained by a model de-
scribing two stable steady states (e.g. two point attractors,
Figure 3F). This bistable switch mechanism has been very
widely used to explain cell states and their transitions (72–
76). We found that both diverging oscillator and bistable
switch mechanisms produced bimodal distributions of gene
expression at a basal level of transcriptional noise. To vi-
sualize the two distinct dynamical systems under both de-
terministic and stochastic influences, we plotted the quasi-
potential landscapes for both mechanisms based on the
results of stochastic simulations (Figure 6A-D). Consis-
tent with the bimodal gene expression distributions, both
mechanisms generated double-well potentials along the to-
tal mRNA axis. However, we observed a striking difference
between the two mechanisms in their routes for state tran-
sitions: because of the limit cycle, the diverging oscillator
has two “channels” connecting the two potential wells (Fig-
ure 6A cyan), whereas the two wells in the bistable switch
mechanism are separated by a saddle point and its associ-
ated separatrix (Figure 6B yellow and orange). The double-
channel-double-well landscape of the diverging oscillator
allows rapid transition between two states driven by deter-
ministic vector field, while the double-well landscape of the
bistable switch only allows stochastic transitions between
the two states (see blue representative trajectories in Fig-
ure 6A-B and Supplementary Video S1). Because of this
difference, we hypothesized that the gene expression pat-
tern driven by the bistable switch is more sensitive to the
initial conditions and the noise levels. We therefore com-
pared the performance of the two mechanisms in terms of
bimodality regeneration with three levels of noise, two ini-
tial conditions, and three signal strengths. We first focused
on the selected signal strengths σR allowing both mecha-
nisms to produce bimodal distributions of mRNA expres-
sion at t = 100 (equivalent to 576 hours after cell sorting,
assuming a 4-hour mRNA half-life) with the same levels
of noise and mRNA-low initial conditions (Figure 6C-D,
blue in center panels). Next, we varied the noise level in
both systems, finding that the bimodal distributions were
retained with the diverging oscillator but not the bistable
switch in both noise-reduced and noise-amplified situations
(compare rows in Figure 6C-D; Supplementary Videos S1
and S2). Furthermore, when we changed the initial condi-
tions to mRNA-high states, we observed significant alter-
ation of gene expression patterns with the bistable switch
under medium and low noise conditions, while the diverging
oscillator was insensitive to the changes of initial conditions
under all tested cases (compare blue and red populations in
Figure 6C-D).

The pronounced robustness of bimodality regeneration
by the diverging oscillator compared to the bistable switch
was in agreement with the consistent quasi-potential land-
scapes at different noise levels (Supplementary Figure
S10A-B). Intuitively, changing noise levels (e.g. by altering
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Figure 5. Global bifurcations of the MMI2-SSB Model. (A) Scatter plot shows parameter sets producing only Hopf bifurcation (blue) and those producing
both Hopf and saddle-node bifurcations (same as Figure 3 dark blue) in the space of RDF ratios. Two representative sets are shown in callouts. (B)
Bifurcation diagram shows levels of R in response to transcription rate constant σR. Blue shade: limit cycles’ inner basins of attraction. (C-D) Phase planes
show vector fields (gray), nullclines (red and blue), and representative solutions (green and orange) for σR = 0.27 and σR = 0.4, respectively. Open and
closed circles represent unstable and stable steady states respectively. Other parameter values: K = 0.001, γ = 0.25, α1 = β1 = 1, α2 = 12, β2 = 4, and
basal mRNA synthesis rate σ 0

R = 5.7. (E) Trajectories of stochastic simulation for two representative cells under a SNIC parameter set. Stochastic ODEs
have the form dx = f (x)dt + ωxdW, where x represents either R or r , f (x) is the right-hand side of the first two ODEs in equation 2, and dW denotes
the Wiener process. ωR = 1.4. ωr = 0.35. σR = 0.3. Other parameter values are the same as in B-D. One time unit is approximately 1.44 × t1/2 where
t1/2 is the half-life of the mRNA. The initial condition is the deterministic steady state solution obtained with σR = 0.1. (F) Distributions of total mRNA
concentrations in 500 simulated cells at the indicated time points. Initial conditions and parameter values are identical to E. (G) Bifurcation diagram of a
model exhibiting a saddle-loop bifurcation showing levels of R in response to transcription rate constant σR. Parameter values are the same as for B except
β2 = 3 and σ 0

R = 6.9. (H-J) Phase planes show vector fields, nullclines, and representative solutions of the saddle-loop model for σR = 0.7, σR = 0.85,
and σR = 1, respectively.

the environment or cell volume) can significantly vary the
heights of the middle barriers in both mechanisms, but the
barrier lies in the main routes of state transitions only for the
bistable switch (Figure 6A-B, Supplementary Figure S10A-
B) (72). In addition, we observed that the diverging oscil-
lator produced bimodality in a wide range of σR (compare
columns in Figure 6C-D), even when the limit cycles were
absent (Supplementary Figure S10C). This is because the
vector field characteristic of the limit cycle has a significant
influence on its adjacent parameter region. Furthermore,
for systems that have only Hopf bifurcations (Figure 3B)
and those have saddle-loop but not SNIC bifurcations (Fig-
ure 5G), the double-channel-double-well landscapes were
still retained (Supplementary Figure S10D-E). These results
suggest that while SNIC bifurcation occurs in a small pa-
rameter region, it acts as an organizing center for the diverg-

ing oscillator that can be supported by widely distributed
parameter values (Figure 5A).

Next, we performed a more systematic comparison be-
tween three types of diverging oscillators (SNIC, saddle-
loop, and diverging Hopf) and a bistable switch with ad-
ditional stochastic simulations and a metric of bimodality
based on Gaussian mixture models (Figure 6E-F, Supple-
mentary Table S2, Section 2.1.9 in Supplementary Data).
We found that the diverging oscillators not only regener-
ated expression patterns with nonlinear time courses of
cell fractions observed experimentally (Figure 6E) (2), but
also produced wider ranges of bimodality compared to the
bistable switch (Figure 6F, Supplementary Figure S12, Sup-
plementary Table S3). Since all the MMI2-driven oscilla-
tions are diverging, we performed the same analysis with
two previously known non-diverging oscillators (Section 4
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Figure 6. Comparison of MMI2-SSB mechanisms for regenerating bimodal gene expression distributions. (A-B) Landscapes of the MMI2-SSB Model with
additive noise describing stochastic transcription of mRNA and microRNA (basal noise level , ). Landscapes were computed based on stationary phase
distribution of stochastic simulations of 500 cells. For each landscape, 50 cells were randomly selected and visualized with the positions at t = 50 (blue
spheres) and trajectories in a 0.4 time-unit period (blue tails). Parameter values for the model generating SNIC bifurcation (A) are the same as in Figure
5B. Parameter values for the model generating SN bifurcation (B) are as in Figure 3F. (C-D) Distributions of total mRNA concentrations at t = 100 (576
hours after selecting cells with extreme expression, assuming a 4-hour mRNA half-life) with three values of σR, three levels of noise, two initial conditions,
and two switch mechanisms from A and B. Noise levels for both mechanisms were identical in corresponding panels. The basal noise levels (middle row) are
as in A and B. The σR values for the two middle columns are 0.3 and 3.2 for the two mechanisms, respectively. The RT-low and RT-high initial conditions
were obtained by sampling 400 initial conditions and their corresponding extrema in the period t > 5. (E) Early timecourse of the proportion of RT-high
cells in a 5000-cell population starting from the low initial condition under basal noise for several MMI2-SSB Models. For SNIC, with RT cutoff 1.0;
for the saddle-loop (SL) model in Figure 5G, with cutoff 1.25; for the diverging (div.) Hopf model in Figure 3B, with cutoff 0.75; for saddle-node, with
cutoff 1.3. All other parameters are compiled in Supplementary Table S2. (F) Width of the region of σR in which each model in E can restore bimodal gene
expression.
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in Supplementary Data, Supplementary Tables S5 and S6),
the repressilator (42) and a “genetic oscillator” (43), and
confirmed that the non-diverging oscillators do not pro-
duce bimodality as robustly (Supplementary Figures S19
and S20). We used two alternative approaches, multiplica-
tive noise and the Gillespie algorithm, to model noise in the
MMI2-SSB Model, confirming that our conclusions about
the capabilities of the diverging oscillator are not sensitive
to the types of noise (Supplementary Figures S11, S13, and
S14). Finally, we explicitly incorporated cell division into
the model, confirming that the results are applicable to the
scenario of a proliferating cell population during hetero-
geneity recovery (Figure 1 box, Supplementary Figure S15).

In conclusion, the diverging oscillator mechanism based
on the MM2-SSB Model gave rise to more robust regenera-
tion of multimodality gene expression patterns compared to
the commonly used bistable switch mechanism. Nonethe-
less, our results do not imply that the diverging oscilla-
tor is the only mechanism for dynamics of all cells in a
population of progenitor cells, which may contain both
self-regenerative cells that exhibit reversible transitions and
those stabilized in point attractors (10). Remarkably, the
MMI2-SSB Model can support either mechanism with ad-
justment of rate constants.

Sustained oscillation and bistability are achieved without
structural modularity

We have shown that the diverging oscillators arise from
adjacent limit cycles and saddle-node bifurcation points,
which further suggests that the emergent functions of the
MMI2 Models depend on their capacity of producing both
oscillations and bistable switches. Bifunctional systems are
often evaluated to consider whether the two functions
are governed by distinct subnetworks. We therefore asked
whether a MMI2 Model contains two molecular modules
each responsible for one function. According to the defi-
nition by Jiménez et al. (77), the degree of modularity re-
garding two biological functions generated by a network
can be described by the number of molecular species (e.g.
genes) shared by two subnetworks necessary for achieving
the two functions respectively, divided by number of molec-
ular species in the union of the two subnetworks. This quan-
tity is the Jaccard index

J (A, B) = |A∩B|
|A∪B| , (4)

where A and B are sets of nodes of the two subnetworks
necessary to achieve the two functions respectively. If the
two subnetworks overlap completely in terms of the struc-
tural components (J = 1), then the two functions are com-
pletely structurally nonmodular in this network. This sce-
nario has a profound implication in evolution: the acqui-
sition of a new function does not require the inclusion of
any new molecular species to the existing network; instead,
the function can be obtained simply by adjusting the kinetic
rate constants in the existing network.

To what extent are bistability and oscillation structurally
modular in the MMI2 Models? Addressing this question re-
quires the identification of essential molecular species for
bistability and oscillation respectively. We focused on two
variants of the MMI2 Model that we described earlier:

the MMI2-SSB Model where the two binding sites were
assumed to be identical (the simplest biological assump-
tion), and the MMI2-ASB Model where only a unique 1:1
complex is possible (a model structurally simpler than the
MMI2-SSB Model). We first asked whether the 2:1 com-
plex is required for bistability and oscillation. Removing
the reaction responsible for the formation of the 2:1 com-
plex from the MMI2-ASB Model gave rise to the structure
of the MMI1 Model which always converges to a point at-
tractor (Figures 2 and 7A, Row 1). Removing the same re-
action from the MMI2-SSB Model gave rise to a similar
model (the C2KO Model in Figure 7A, Row 2). We found
that neither oscillation nor bistability can be obtained with
the C2KO Model, i.e. none of the randomly generated 105

parameter sets produced Hopf bifurcation or saddle-node
bifurcation. We proceeded to prove this analytically. We
found that the C2KO Model has at most one positive steady
state, which is asymptotically stable (Section 3.1 in Sup-
plementary Data, Supplementary Figure S17). As a conse-
quence, the C2KO Model is incapable of generating oscil-
lations or bistability. The 2:1 complex is therefore required
for both functions. To test whether a 1:1 complex is required
for bistability and oscillation, we assumed that the second
binding site is occupied immediately upon the binding of
the first site in both MMI2-SSB and MMI2-ASB Models,
which gave rise to the C1KO Model (Figure 7A, bottom
right). With this modification, both oscillation and bista-
bility were lost completely (Figure 7A, Row 3; see Section
3.2 and Supplementary Figure S18 in Supplementary Data
for an analytical proof), suggesting that a 1:1 complex is
also required to achieve both functions. Because the un-
bound forms of the mRNA and the miRNA are required
to form the complexes, which cannot be produced through
transcription directly, it is impossible to remove these un-
bound species in a biologically meaningful way without re-
moving the complexes. Removing the transcription reaction
of either unbound miRNA or unbound mRNA resulted in
trivial cases in which the system has a single point attractor
(Figure 7A, Rows 4 and 5). In addition, significant amounts
of each of the unbound mRNA species always appeared in
some phases of the sustained oscillations (Figure 3C). Simi-
larly, in each bistable system observed with the MMI2-SSB
and MMI2-ASB Models, unbound mRNA and unbound
miRNA existed in at least one stable steady state. We there-
fore concluded that the unbound species are required for
both bistability and oscillation. Taken together, we found
that there is no structural modularity of bistability and os-
cillation in the MMI2 Model (J = 1, right endpoint of
Figure 7B; Supplementary Table S4).

DISCUSSION

MicroRNA-mediated gene expression variation

MicroRNA has been extensively studied in its roles in at-
tenuating noise and increasing phenotypic robustness (19).
However, recent data suggest that some microRNA can
increase gene expression fluctuations and facilitate phe-
notypic variation (8,20). Nonetheless, previous theories of
miRNA dynamics assume that microRNA-mRNA interac-
tions alone do not produce oscillatory or excitable systems
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Figure 7. Nonmodular combination of two functions in the MMI2 Models. (A) Table shows five biologically plausible ways for removing molecular
species from the MMI2-SSB or the MMI2-ASB Models. For each model, 105 parameter sets were randomly generated. Percentages of indicated steady
state behaviors through bifurcation analysis with respect to σR are shown in the last three columns. In all cases, 0% means that exactly none of the 105

sets produced the indicated type of steady state. Bottom rows show the performance of the unperturbed MMI2-SSB and MMI2-ASB Models. Right
diagrams show structures of the two new perturbed models. (B) Summary of the structural modularity (quantified by the Jaccard index) of representative
networks containing sustained oscillation and bistability. The Jaccard indices of the combined toggle-switch-repressilator circuit and the MAPK network
were estimated based on previous work (82,85).

(23,78). Our results raise the possibility that some microR-
NAs may induce slow-timescale oscillatory dynamics with-
out a transcription-dependent feedback loop. This suggests
that the observed variation-amplifying effects of miRNA
may be due to limit cycle oscillations or excitability resulting
from simple reaction networks of microRNA and mRNA.
We showed that the oscillatory and excitable dynamics can
be obtained with several versions of the MMI2 Model.
Furthermore, our conclusions were not sensitive to the as-
sumption that the two RNAs are only degraded separately
rather than co-degraded (Supplementary Figure S21), sug-
gesting the robustness of the emergent dynamics. These
destabilizing dynamics at the post-transcriptional level may
provide additional strategies for cells to encode and pro-
cess information, or to regenerate heterogeneity in cell
populations.

Modularity of oscillators and bistable switches

Negative and positive feedback loops have been considered
essential components for biological rhythms and switches,
respectively (17,79,80). Consistent with the difference in
structure between the two feedback loops, each of the pre-
viously studied biological networks with both switch and
rhythm functions contains two distinct modules, which may
have partial, but not complete, overlap in terms of molecu-
lar species (e.g. gene products) (81–87). Here, we showed the
possibility that the two functions may not have any struc-
tural modularity in the RNA-centric reaction networks,
which highlights the importance of functional modularity
when studying biological networks (77,88). Furthermore,
this work revealed broad ranges of kinetic rate constants
allowing oscillation and bistability in the MMI2 Models,
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which may guide synthetic biologists to design RNA-based
circuits with versatile functions.

Comparison with other dual oscillator-switches

It was previously shown that the MAPK cascade, a widely
studied protein signaling network, produces both oscilla-
tion and bistability (89). The periods of the oscillations gen-
erated by the protein network (about 30 min) are much
shorter than those generated by the MMI2 Models. It was
recently found that some molecular species in the MAPK
network are required for bistability, but not oscillation (85),
indicating structural modularity in the network. Nonethe-
less, because of the highly integrated structural components,
we expect that the MAPK network shares some of the emer-
gent properties that we discussed for the RNA-based diverg-
ing oscillator (e.g. global bifurcations), and it will be impor-
tant to investigate the mathematical basis of these oscillator-
switches collectively in the future.

Another recent study combined a repressilator and
toggle-switch to generate a dual-function circuit based on
transcriptional regulations (82). To achieve both oscillation
and bistability in similar parameter regions, the circuit re-
quires an additional feed-forward loop at the signal level.
Furthermore, the combined circuit is structurally modular
with respect to the two functions (82). Finally, due to the
long distance between the orbit and the point attractors in
the state space, global bifurcations and subcritical Hopf bi-
furcation, which also contain global features (79,80), are rel-
atively rare with the circuit (82). All these properties are dis-
tinct from those of the diverging oscillator studied here.

With a network containing nine transcriptional regu-
lations, Jutras-Dubé et al. recently showed the superior
robustness of SNIC bifurcation in generating embryonic
patterns compared to Hopf bifurcation (90). The MMI2
Models provide a simple mechanism for generating such
global bifurcation at the post-transcriptional level, which
could be used for patterning in early development. While
it may be possible for a system to achieve dual functions
through paradoxical feedback involving one transcription
factor (TF) that both activates and inhibits a target gene
directly (9,91), the paradoxical regulation requires two TF-
promoter complexes responsible for activation and inhibi-
tion respectively (92), which would suggest a fundamental
structural modularity.

Robust regeneration of multimodal gene expression patterns

Spontaneous regeneration of cell populations with multi-
modal gene expression patterns was observed in progeni-
tor cells and cancer cells, but the mechanism for this phe-
nomenon at slow time scales has been a longstanding prob-
lem in biology. While noise-induced transitions between sta-
ble steady states (point attractors) have been used to explain
some of the observations, it was shown that the modality of
the gene expression distribution and its underlying “epige-
netic landscape” is very sensitive to the level of noise (93).
We showed that oscillations with diverging periods can be
useful to regenerate multimodal gene expression. In this
mechanism, transitions between very distinct cell states are
supported by both deterministic and stochastic dynamics:

limit cycles and excitable vector fields ensure the periodic
occurrence of dramatic change of gene expression, whereas
stochasticity is important for producing the asynchrony in
the cell population, and for triggering the oscillatory re-
sponses in some cases. The possibility of using excitable
systems to generate multimodal expression pattern was dis-
cussed previously (9).

As this study examined the dynamics of generalized
models, it cannot identify specific networks involved in
observed heterogeneity restoration processes. Determining
how many real mRNA-microRNA networks fall into the
parameter regions responsible for these dynamics would re-
quire detailed experimental measurements. The models fur-
thermore do not incorporate impacts on RNA decay or
noise levels by other dynamic cellular processes, which may
enhance or suppress variation in expression.

Nevertheless, our work showed a simple and potentially
widespread mechanism to achieve period-diverging oscil-
lations. This hitherto unknown mechanism can help re-
searchers discover circuits responsible for regenerating het-
erogenous populations of specific cell types.
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