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Introduction 

In vertebrates, the immune response against pathogens is mounted by the innate immune system  

and the adaptive immune system [1-3]. The latter form of immune response involves 

immunological memory which allows the system to recognize subsequent invasions of the 

pathogens following their initial response and activate enhanced responses. This memory endows 

long-term protection from pathogens and serves as the basis for vaccination. T cells, or T 

lymphocytes, play key roles in the adaptive immune system. They are named based on their 

developmental origin: their T cell lineage is determined in the thymus gland [4]. The antigen 

receptors on the surface of T cells, known as T cell receptors (TCR), are highly specific to the type 

of pathogen that they are combating. The diversity of these receptors is achieved by somatic 

hypermutation [5,6] and genetic recombination, which generate a large number of antigen 

receptors. Specific recognition of antigens by TCR initiates the activation of the T cell and 

subsequent responses, including direct or indirect elimination of the infected cells. In addition to 

the receptors that recognize antigens from pathogens, T cells also have co-receptors that facilitate 

the antigen-specific activation. Some of these co-receptors serve as surface markers that 

distinguish two major types of T cells. T cells that express co-receptor CD8 on their surfaces (CD8+ 

T cells) are cytotoxic T cells which are responsible for killing infected cells directly.  CD4+ T cells 

are helper T cells that eliminates pathogens indirectly by activating other parts of the immune 

system, including CD8+ T cells and innate immune cells such as macrophages and natural killer 

cells [7-9]. Within the class of CD4+ T cells, there exists several types of T helper cells, e.g. T 

helper 1 cells (Th1), T helper 2 cells (Th2), and T helper 17 (Th17) cells [10]. The differentiation 

(i.e. lineage specification) of these T helper cell types marks the final maturation of these T cells 

upon which they become functional. The differentiation of CD4+ T cells is triggered by TCR 

activation, but the specification towards specific lineages is also determined by other signals such 

as cytokines [11], which are small immunomodulating molecules released from immune cells. For 

example, the differentiation of Th2 cells requires activations of TCR (antigen-specific receptor), 

CD3 (co-receptor), CD28 (secondary stimulatory receptor) and interleukin-4 (IL-4, a cytokine) 

receptor, whereas IL-12 and interferon-γ (IFN-γ) bias the differentiation toward Th1 cells in the 

absence of IL-4 [12]. 

The goal of this chapter is to use the differentiation of CD4+ T cells as a paradigm to illustrate how 

gene regulatory networks (GRNs) control the dynamics of cell differentiation. We will address the 

following questions in terms of the differentiation using simple mathematical models: 1) how 



robust fate decisions of T cells are made with the help of GRN; 2) how a population of 

undifferentiated T cells differentiate to a population of cells with diverse molecular signatures and 

functions; and 3) how strengths of the TCR and cytokine signals influence the differentiated 

population of T cells. Insights into these questions will not only help to elucidate the understanding 

of T cell biology, but also shed light on the fundamental mechanisms underlying the complex 

immune responses. 

  

Physiology and Molecular Mechanisms 

CD4+ T cells coordinate the immune systems by communicating with a wide range of immune 

cells. These T cells perform this function primarily by releasing cytokines. Each type of CD4+ T 

cells produce and release a unique set of cytokines, known as signature cytokines, which 

specifically activate or inhibit the activities of certain groups of immune cells. There are at least 

four types of CD4+ T cells. Th1 cells are primarily responsible for clearing intracellular infection. 

Th2 cells lead to response against extracellular parasites. Th17 cells are used to eliminate 

extracellular pathogens and fungi. There is a distinct group of CD4+ T cells called regulatory T 

cells (Treg cells) that serve as immunosuppressors, which modulate the immune system and 

prevent autoimmune diseases. More recently, other types of CD4+ T cells, such as follicular T cells 

(Tfh cells), Th9 cells and Th22 cells, were also discovered [13,14]. In addition to their unique 

functions and cytokine profiles, different types of CD4+ T cells also exhibit distinct gene 

expression patterns in general, indicating that large gene regulatory programs are required to 

achieve cell-type specification. It has been shown that the differentiation of each type of CD4+ T 

cell is governed by the upregulation of at least one transcription factor (TF) that is considered the 

master regulator of the cell type. Well-known master regulators include T-bet (Th1), Gata3 (Th2), 

RORγt (Th17) and Foxp3 (Treg) [12]. Upon the stimulation of TCR and other receptors on an 

undifferentiated CD4+ T cell, known as the naïve T cell, a specific master regulator is upregulated, 

and this activation leads to changes of the transcriptional profile in the T cell, including the 

upregulation of the genes that encode the signature cytokines of a T cell type (Figure 1A). The 

differentiation is irreversible with respect to the withdrawal of the stimulants, suggesting the 

robustness of the cell type specification [15,16]. The microenvironment of the naïve T cell, which 

includes the types and amounts of cytokines available during the differentiation, is critical for 

determining the generated cell type. These cytokines are known as the polarizing signals (as 

opposed to TCR signals which are common to all cell types) that guide the differentiation toward 

specific cell types [13].  

Although irreversibility of the CD4+ T cell differentiation was observed [16], the deterministic 

view of this system was challenged by three characteristics of the differentiation. First, a 

population of naïve T cells can generate a diverse group of functional CD4+ T cells in terms of the 

expression patterns of signature cytokines and master regulators in the same microenvironment 

(Figure 1B). These observations were made with in vitro differentiation experiments in which 

experimentalists precisely control the signals that the naïve T cells receive [17-20]. Secondly, the 

composition of this heterogeneous cell population can be changed by altering the polarizing signals 

before the differentiation (Figure 1B), or even after the differentiation is completed if the signals 

are sufficiently strong. This indicates the plasticity of the CD4+ T cells, and it also provides 

evidence against the possibility that the heterogeneous differentiation is due to the predetermined 



diversity within the naïve T cell population. Finally, it has been observed that cells that co-express 

master regulators of multiple cell types (e.g. RORγt and Foxp3) stably exist in vitro and in vivo 

[21-23]. This further suggests the diversity of the CD4+ T cells is beyond the model of lineage 

specification toward cells that stably express a single lineage-defining master regulator (Figure 

1B). 

 

Figure 1. Overview of CD4+ T cell differentiation and network diagram for modeling. 

A.  Illustration of cell fate choice of a naïve CD4+ T cell upon the simulation of TCR by an antigen-

presenting cell (APC) and the influence of surrounding cytokines. Four examples of differentiated 

cell types and their master regulators are shown. B. Examples of scenarios in which a population 

of naïve CD4+ T cells are differentiated into a heterogeneous population. Red and green cells 

represent single-positive cells where one master regulator is upregulated. Yellow cells represent 

double-positive cells where two master regulators are upregulated. C. Examples of regulatory 

networks controlling dual-master-regulator differentiation systems. D. A generic network 

summarizing gene networks for CD4+ T cell differentiation. X and Y represent two master 

regulators. S1 represents the common activator (e.g. TCR). S2 and S3 are polarizing signals 

representing two sets of cytokines. 

 

The goal of our models for CD4+ T cells is to capture the intriguing and perplexing observations 

mentioned above and provide a mechanistic and theoretical basis for the phenomena. Our idea is 

simply that the gene regulatory networks in these T cells, which primarily involve interactions 



among the master regulators as well as their responsiveness to signals from extracellular factors, 

govern the dynamics of the differentiation, including heterogeneity of the derived cell population, 

the tunability of the population composition based on the signal types and strengths, and the 

existence of stably co-expressed master regulators. 

How do different master regulators of different CD4+ T cell types interact with each other? It was 

found that two master regulators typically have a cross-repressive relationship: they inhibit the 

expression of each other. For example, it was shown that T-bet and Gata3 mutually inhibit each 

other and form a double-negative (i.e. positive) feedback loop. In addition to this feedback loop, 

the master regulators often involve other forms of positive feedback, including self-activation 

through transcriptional upregulation or autocrine regulation (master regulator activated by 

cytokine released from the same cells). These gene regulations form a cross-repression-

autoactivation network motif (Figure 1C and D) that is common in CD4+ T cells as well as other 

systems involving binary cell fate decisions. In addition to this network motif involving master 

regulators, CD4+ T cells have a recurring signaling structure connecting extracellular simulants to 

master regulators: the TCR stimulation, which serves as the main activation signal for 

differentiation, activates all master regulators, whereas each cytokine in the microenvironment of 

the cells polarizes the differentiation toward specific lineages by activating a unique master 

regulator. This network structure is illustrated in Figure 1D in the dual-master-regulator paradigm. 

A common activator TCR signal upregulates two master regulators, and two representative 

polarizing signals (cytokines) activate the two master regulators respectively. In the next section, 

we build simple mathematical models based on this recurring network structure in CD4+ T cells 

and examine how this regulatory network controls the dynamics of differentiation in general. 

 

Mathematical Models and Results 

As shown in the influence diagram (Figure 1D), we start our analysis with the generic 

differentiation network motif which serves as a unifying framework for understanding CD4+ T cell 

differentiation. Once we have obtained a basic understanding on this motif, we can connect the 

framework to specific models and simulations that can be compared with experiments. 

 

Master regulator cross-repression with TCR signal 

We first consider a core subnetwork within the proposed cell differentiation motif: a mutual 

inhibition, double-negative feedback loop between master regulators X and Y, both of which are 

activated by TCR signal. This simplified system can be described by the following ODEs: 

𝑑𝑋

𝑑𝑡
= 𝛾X(𝐹(𝜔𝑋

𝑜 + 𝜔𝑋𝑌𝑌 + 𝑠1 + 𝑠2) − 𝑋) 

𝑑𝑌

𝑑𝑡
= 𝛾𝑌(𝐹(𝜔𝑌

𝑜 + 𝜔𝑌𝑋𝑋 + 𝑠1 + 𝑠3) − 𝑌) 

 



𝐹(𝑊) =
1

(1 + 𝑒−𝜎𝑊)
                                                                       (1) 

 
 

Here, 𝑋  and 𝑌  represent the dimensionless activities of factors X and Y respectively. The 

nonlinear function 𝐹(𝑊) is a sigmoidal function that describes the activation of a factor under the 

influence of other factors, and the ODE indicates that this function also describes the steady state 

activity of the factor. Parameter 𝛾  is the timescale of the change of a factor. 𝜎  describes the 

nonlinearity of the function 𝐹. 𝑊 denotes the overall influence (weight) of other factors on a factor, 

which has taken an offset parameter 𝜔𝑜 into account. 𝜔𝑜 also determines the basal activity of the 

factor in the absence of any other factors. Importantly, 𝜔𝑋𝑌 is a weight parameter describing the 

strength of the inhibition of X by Y, and 𝜔𝑋𝑌𝑌 is the effective weight with given activity of Y. 

𝜔𝑌𝑋  represents the strength of the other inhibitory regulation in the feedback loop. 𝑠1  is a 

parameter representing the strength of the TCR signal. In this particular model, the overall weight 

𝑊  for 𝑋  is the summation of 𝜔𝑋
𝑜 , 𝜔𝑋𝑌𝑌 and 𝑠1 , reflecting the assumption that gene X is only 

influenced by Y and signal S1. We provide a set of generic parameter values to this model, and 

they are symmetrical with respect to X and Y:  𝛾X = 𝛾𝑌 = 1, 𝜔𝑋
𝑜 = 𝜔𝑌

𝑜 = −1, 𝜔𝑌𝑋 = 𝜔𝑋𝑌 = −2, 

𝜎𝑋 = 𝜎𝑌 = 5. We set the initial conditions to be a state where 𝑋 and 𝑌 are equally low (𝑋 = 𝑌 =

0.01), and we set the strength of the signal S1 to 2 (𝑠1 = 2), mimicking the stimulation of the TCR 

upon antigen binding. Note that this form of equations is similar to those with Hill functions, and 

it has been used to describe complex gene regulatory networks for processes such as epithelial-

mesenchymal transition [24]. 

Solving the ODEs numerically with these parameter values and initial conditions gives rise to 

trajectories of X and Y as functions of time, but it is helpful to visualize the trajectories in the 

space of X and Y (Figure 2A). Under the conditions described above, the trajectory of the 

simulation starts from an XoffYoff state and stays in the region before S1 stimulation. When the S1 

signal is raised to 1, the cell state starts to change with increasing X and Y, and it is stabilized at a 

state with intermediate levels of X and Y at the end of the simulation (Figure 2A). We simply 

define that a cell is differentiated when either X or Y is above 0.5. In this simulation, we have 

obtained a differentiated cell that co-express X and Y. Does this cellular phenotype match any 

experimental observation? Before we make a conclusion, we examine the robustness of the steady 

state phenotype with respect to slight changes of the initial conditions. To perform this analysis in 

XPPAUT, we use the ‘mice’ option under ‘Initialconds’. By repeatedly clicking in the 

bottom-left region in the X-Y space, we simulate a small population of cells, each of which express 

low levels of X and Y with a slight cell-to-cell variability in terms of the initial states, reflecting a 

biologically plausible scenario. With this procedure, we observe that the simulated cells are 

stabilized at either the XonYoff state or the XoffYon state, representing two canonical types of CD4+ 

T cell, at the end of the simulations (Figure 2A). This is an interesting and biologically meaningful 

observation, because it shows that with the same simulant, a population of naïve CD4+ T cells that 

are essentially identical can be differentiated into a population with remarkable diversity in terms 

of the expression of master regulators. This scenario was observed experimentally: activating TCR 

without supplying additional cytokine led to a heterogeneous population containing both Th1 and 

Th2 cells [25]. 



What is the mechanistic basis of this phenomenon from the viewpoint of dynamical systems? To 

answer this question, we take the advantage of the model’s simplicity, specifically the amenable 

features of the 2-dimensional system, and use phase plane analysis to identify key elements in this 

dynamical system, including vector field, nullclines, steady states and their stabilities. To find the 

nullclines in XPPAUT, we first erase the existing trajectories by clicking on ‘Erase’. Suppose 

we would like to understand the features of the system in the presence of the TCR signal. We set 

the S1 signal to 1. We then click on ‘Nullcline’ and ‘New’ buttons, and two nonlinear curves 

are shown in the X-Y plane (Figure 2B). These two curves represent the positions where dX/dt=0, 

and dY/dt=0, respectively, and their intersections represent the steady states of the system. In this 

case, three steady states are governed by the structure of the nullclines. To view the vector field of 

the system, we first click on the ‘Dir.field/flow’ and the ‘Direct field’ buttons, and 

then we choose a suitable number of elements in the grid (e.g. 20). As a result, a vector field is 

shown, and each arrow in the field represents the direction of the solution (i.e. the trajectory as the 

system moves forward with time) at a particular state in the X-Y space (Figure 2B). The stabilities 

of the three steady states can be inferred from the vector field: most of the vectors close to the two 

‘polarized’ XonYoff and XoffYon states are pointing toward them, whereas most of the vectors close 

to the co-expressing state are pointing away from it. Therefore, XonYoff and XoffYon states are stable, 

representing long term behaviors of cellular phenotype, whereas the XonYon state is unstable and 

therefore only represents a transient state of cells. We can confirm the inferred stabilities in a more 

rigorous manner by using ‘Sing pts’ and ‘Mouse’ buttons in XPPAUT to examine the 

interactions one at a time. The output will show us the stability of each steady state by calculating 

the eigenvalues of the Jacobian matrix at the state. The two stable steady states are known as 

‘attractors’ of the system, and their basins of attractions are separated by a curve called separatrix 

which happens to pass the XlowYlow region in this model (Figure 2B, yellow). As such, slight cell-

to-cell variability in the naïve cells tips them into distinct basins of attractors, which leads the cell 

differentiation to two stable ‘polarized’ phenotypes. 

Our initial model successfully explains the basis of heterogeneous differentiation, but how can we 

explain the observed stable hybrid cell states in CD4+ cells (e.g. cells co-expressing T-bet and 

Gata3 and those co-expressing RORγt and Foxp3)? To address this question, we vary the TCR 

signal in a wide range of strengths (e.g. 0 - 3). Unsurprisingly, lowering the TCR signal leads to 

the disappearance of the XonYoff and XoffYon states and a stable XoffYoff state, representing the naïve 

cell, is generated (Figure 2C). In contrast, increasing the TCR signal generates a system with a 

single stable state with a XonYon phenotype, which may correspond to the ‘double-positive’ cells 

observed experimentally [17,23] (Figure 2D). However, this model would predict that the double-

positive cells only appear in the presence of strong TCR signals, which do not allow the formation 

of single-positive cells. This prediction is inconsistent with the observations that the double-

positive CD4+ cells often coexist with the single-positive ones under uniform culturing conditions 

[17]. To capture this phenomenon, we need to consider a model that contains additional elements 

included in the network motif (Figure 1D), namely the autoactivation of the master regulators. 



 

Figure 2. Simulation and analysis of the cross-repression model. A. Model was simulated with 

TCR signal 𝑠1=2. Black: simulation trajectory under a perfectly symmetrical (X=0.01, Y=0.01) 

initial condition. Red and green: simulation trajectories under randomly chosen initial conditions 

in the XlowYlow region representing naïve T cells. Dots show the steady states of the simulations. 

B. Phase plane of the system. Red and green arrows represent vectors in two basins of attractions. 

Yellow arrows show vectors at the separatrix. Blue and indian red curves show nullclines of X and 

Y respectively. C. Phase plane without TCR signal (𝑠1=0). D. Phase plane with strong TCR signal 

(𝑠1=5). 

 

Master regulator cross-repression and autoactivation with TCR signal and polarizing cytokines 

To add the autoactivation to our initial model, we modify the weight W in both ODEs: 

𝑊𝑋 = 𝜔𝑋
𝑜 + 𝜔𝑋𝑌𝑌 + 𝜔𝑋𝑋𝑋 + 𝑠1 

𝑊𝑌 = 𝜔𝑌
𝑜 + 𝜔𝑌𝑋𝑋 + 𝜔𝑌𝑌𝑌 + 𝑠1                                                             (2) 

Here, 𝜔𝑋𝑋𝑋  describes the influence of factor X by itself. To examine the effect of the 

autoactivation, we set the weight parameters 𝜔𝑋𝑋  and 𝜔𝑌𝑌 to 1.5, and we perform the analysis of 

the nullclines of this new system. By varying the S1 signal strength (𝑠1), the two nullclines may 

have 1, 3, or 5 intersections, depending on the choice of 𝑠1 . While the scenarios of 1 and 3 

intersections (i.e. 1 or 2 stable steady states) are similar to what we observed with our first model, 

there are two ranges of 𝑠1 that allows for 5 interactions of the nullclines, an observation unique to 

this model (e.g. Figure 3A). By examining the stability of the steady states, we find that certain 

low levels of 𝑠1 allow the coexistence of XoffYoff, XonYoff and XoffYon stable states (see Exercises), 

whereas certain high levels of 𝑠1 allow the coexistence of XonYon, XonYoff and XoffYon stable states 

(Figure 3A) (i.e. two types of ‘tri-stable’ systems). The tri-stable system with low levels of 𝑠1 may 

be important for the irreversibility of T cell differentiation (see Exercises), and the tri-stable system 

with high levels of 𝑠1 may provide a mechanistic basis of for the observations that double-positive 

CD4+ cells coexist with the single-positive ones. The latter statement is supported by the fact that 

the separatrices (note that we have three basins of attractors in this scenario) are still adjacent to 

the XlowYlow region. Therefore, when we simulate a cell population with slight cell-to-cell 

variability in terms of initial conditions, we obtain a diverse population of differentiated cells 

containing three phenotypes, due to the small initial variations which tip the cells to different basins 

of attractions (Figure 3B). 



The changes of the steady states of the system with respect to S1 signal can be succinctly delineated 

by a one-parameter bifurcation diagram. In XPPAUT, bifurcation diagrams can be generated in 

the ‘AUTO’ window under the ‘File’ option. Note that to get these bifurcation diagrams we need 

to use an equilibrium point that has been calculated from your solution of ODEs. In the ‘AUTO’ 

window, click on ‘Run’ ‘Steady state’ buttons. In Figure 3C for example, steady state levels 

of 𝑋 (i.e. intersections of the nullclines) are plotted with respect to 𝑠1. Thick curves in the diagram 

represent stable steady states, whereas thin curves represent unstable ones. With the increase of 𝑠1, 

the system makes four switches in terms of the number of stable steady states: 1) 1-to-3 

(𝑠1=0.07164); 2) 3-to-2 (𝑠1=0.4831); 3) 2-to-3 (𝑠1=2.017); and 4) 3-to-1 (𝑠1=2.428). This is 

consistent with our phase-plane analysis, and this diagram captures all qualitative changes of the 

system without the need of changing 𝑠1 manually. 

What is the role of the polarizing signals (cytokines) in shaping the dynamical system and the cell 

differentiation?  This question can be addressed by simplify making another modification to the 

weight W in the ODEs 

𝑊𝑋 = 𝜔𝑋
𝑜 + 𝜔𝑋𝑌𝑌 + 𝜔𝑋𝑋𝑋 + 𝑠1 + 𝑠2 

𝑊𝑌 = 𝜔𝑌
𝑜 + 𝜔𝑌𝑋𝑋 + 𝜔𝑌𝑌𝑌 + 𝑠1 + 𝑠3                                                        (3) 

 

Here parameters 𝑠2  and 𝑠3  represent polarizing signals that bias differentiation toward X 

expression and Y expression respectively. We use phase-plane and simulations again to show the 

effect of adding a polarizing signal, e.g. 𝑠2, to the system. Raising 𝑠2 from 0 to 0.05 results in a 

slight shift of vector field and basins of attractions which favor X expression (Figure 3D). This 

symmetry breaking effect gives rise to a biased cell population if we randomly choose the initial 

conditions for the naïve in the XlowYlow region (Figure 3E). Increasing 𝑠3 while holding 𝑠2 constant 

has the opposite effect (Figure 3F and G). This analysis shows that the polarizing signals (cytokines) 

can change the compositions of the heterogeneous cell population by breaking the symmetry of 

the system. 

Our model parameters are assumed to be symmetrical with respect to X and Y, except for the 

polarizing signals. Perfectly symmetrical gene regulation is an unlikely scenario in biology. In fact, 

any changes to the internal gene regulatory parameters (e.g. 𝜔𝑌𝑋) will give rise to an asymmetrical 

system in a manner similar to the effect of polarizing signals. This explains the observation that 

the double-positive cells often coexist with only one of the two types of single-positive cells.  

 



 

Figure 3. Simulation and analysis of the cross-repression and autoactivation model. A. Phase 

plane under strong TCR signal condition (𝑠1=2.05). B. Simulation trajectories under strong TCR 

signal condition. Initial conditions were randomly chosen in the XlowYlow region. C. Bifurcation 

diagram showing the steady state of X with respect to s1. Thin curves represent unstable steady 

states. Thick curves represent unstable steady states. D. Phase plane under strong TCR signal 

condition in the presence of polarizing signal S2 (𝑠2=0.05). E. Simulation trajectories under strong 

TCR signal condition in the presence of polarizing signal s2. Initial conditions were randomly 

chosen in the XlowYlow region. F. Phase plane under strong TCR signal condition in the presence 

of polarizing signal S3 (s3=0.05). G. Simulation trajectories under strong TCR signal condition in 

the presence of polarizing signal 𝑠3 . Initial conditions were randomly chosen in the XlowYlow 

region.  

 

Discussion 

In this case study, we have used mathematical models to show how CD4+ T cells differentiate to 

functional cell types. Specifically, we show that a simple gene regulatory network containing 

cross-repression and autoactivation of two lineage defining master regulators can govern 

differentiation of naive CD4+ T cells into a heterogeneous population with distinct subsets of cells 

in terms of the master regulator expression. In addition, the model captures the existence of the 

double-positive cell phenotype which has high expression levels of more than one master regulator 

[26,27]. Although different types of CD4+ T cells have specific roles in eliminating different 

pathogens, it has been proposed that the diversity and the flexibility of the CD4+ T cell populations 

may be important for the ‘agility’ of the immune system [28]. Therefore, the robustness formation 

of the heterogeneous, functional CD4+ T cells, as well as the double-positive phenotype, may serve 

as the cellular basis of this feature of the immune system. In terms of the extracellular signals, the 

models show that T cell receptors trigger the heterogeneous differentiation, but the polarizing 

cytokines can bias the differentiation toward specific types. Therefore, the system has a remarkable 

capacity of generating either diverse or uniform cell populations depending on the 

microenvironment of the cells. 



We use a generic description of master regulators and signals in our models. This is because the 

network motif represents several sub-systems of CD4+ T cells with similar structures of gene 

regulatory network (Figure 1C). If one needs to obtain a more quantitative model for a specific 

sub-system, then this generic model can be optimized through, for example, fitting parameters to 

quantitative measurements. In addition, the cross-repression-autoactivation network motif has 

been found in several other developmental systems in which binary cell fate decisions are made in 

a robust manner [29]. Understanding this motif will help to reveal the principles underlying a wide 

range of biological systems. 

In these simple models, only two master regulators are considered. A more realistic description of 

the CD4+ T cells must include the interactions of more than two master regulators. Previous studies 

have provided this type of holistic views of CD4+ T cells [30,31], and these models capture many 

phenotypes that the simple dual-regulator models cannot describe, including the possible existence 

of triple-positive phenotypes. In terms of modeling strategy, we have used ODE based models. As 

an alternative approach, Boolean-network based models have been applied to CD4+ T cell 

differentiation, with a more comprehensive description of players but less detailed kinetics in the 

system [32].  

More recent studies of CD4+ T cells have shown the possibility that these cells are in the continuum 

of the space of master regulator expression rather than discrete states [33]. The model presented 

in this chapter cannot describe the expression continuum due to the simplicity of the gene networks. 

Taking more genes and the stochasticity of their expression into account would provide a more 

accurate and quantitative model of the CD4+ T cells. Nonetheless, our models show that the 

interactions between master regulators can shape the attractors of the system, and these attractors 

guide the differentiation of these T cells, which may be diverse at the population level but robust 

in terms of decisions of individual cells. This may serve as a unifying principle governing 

differentiation of CD4+ T cells and other systems. 

 

Methods 

The XPPAUT code to analyze the models in this case study is shown below. 

Code 1 

dX/dt=1/(1+exp(-sigmaX*(w0X+wXY*Y+s1+wXX*X+s2)))-X  

dY/dt=1/(1+exp(-sigmaY*(w0Y+wYX*X+s1+wYY*Y+s3)))-Y  

 

init X=0.001 

init Y=0.001 

 

#par s1=2.05 

par s1=0 

#par s1=2 

#par s1=5 

 

par s2=0.00, s3=0.00 



par sigmaX=5 

par sigmaY=5 

par w0X=-1.0 

par w0Y=-1.0 

par wXY=-2 

par wYX=-2 

 

par wXX=1.5  

#par wXX=0 

# set to 0 for the 1st model 

 

par wYY=1.5  

#par wYY=0 

# set to 0 for the 1st model 

 

@ dt=0.01, total=100, method=stiff, maxstore=10000000, 

bound=100000000 

@ XP=X, YP=Y, XLO=-0.1, YLO=-0.1, XHI=1.1, YHI=1.1, NMESH=500 

@ AUTOYMIN=-0.1, AUTOYMAX=1.1, PARMIN=0, PARMAX=3, AUTOXMIN=0, 

AUTOXMAX=3 

@ DSMIN=0.0001, DS=0.002, DSMAX=0.1, NMAX=500, NPR=200 

 

done 

 

Exercises 

1. Reversibility of cell differentiation.  

(1) Generate a one-parameter bifurcation diagram for the first model (the one without 

autoactivation). This diagram should show the steady state of X with respect to the strength of 

signal S1 (similar to Figure 3C). Simply modify the code above by changing the 𝜔𝑋𝑋  and 𝜔𝑌𝑌 to 

0, and increase the range of the parameter for bifurcation analysis to 0-4 (PARMIN=4, 

AUTOMAX=4) for a better view of the diagram. Run the system to the steady state, and then run 

bifurcation analysis as described in the Results. 

(2) Compare the diagram generated in (1) with Figure 3C in the low-middle range of s1. Predict 

the roles of the autoactivation on the reversibility for the differentiation of XonYoff and XoffYon 

phenotypes when the signal first increases and then decreases.  

(3) Add the following lines of code to the existing code: 

global 1 {ta-10} {s1=0.1} 

ta=t 

The two lines describe the scenario mentioned in (2): the signal is reduced to 0.1 at Time 10. Run 

simulations under the conditions 𝜔𝑋𝑋 = 𝜔𝑌𝑌 = 0, and 𝜔𝑋𝑋 = 𝜔𝑌𝑌 = 1.5 separately, and validate 



the prediction you make in (2). To run the simulations, use the ‘mouse’ option and click on an 

initial condition in the lower-left corner of the X-Y space. 

 

2. An alternative description of gene expression variability. 

In this chapter we have used different initial conditions to describe cell-to-cell variability. This 

variability can be described by other methods as well. For example, there exist random fluctuations 

in gene expression, which can tip the cells into different basins of attractions. Implement this 

alternative way to describe variability by replacing the two equations in Code 1 with the following 

lines: 

dX/dt=1/(1+exp(-sigmaX*(w0X+wXY*Y+s1+wXX*X+s2)))-X+wX*eX 

dY/dt=1/(1+exp(-sigmaY*(w0Y+wYX*X+s1+wYY*Y+s3)))-Y+wY*eY 

wiener wX, wY 

 

Next, add the following parameter values to the bottom of the parameter value list:  

par eX=0.02, eY=0.02. The two parameters describe the amplitude of the fluctuations in 

gene expression. Simulate multiple cells again with the ‘Master regulator cross-repression and 

autoactivation’ model. Do you observe heterogeneity in the differentiated population if you start 

the simulations and the same initial condition? What is the effect of increasing or decreasing the 

amplitude of the noise on the population composition? 
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