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Large-scale transcriptome data, such as single-cell RNA-sequencing data, have
provided unprecedented resources for studying biological processes at the systems
level. Numerous dimensionality reduction methods have been developed to visualize
and analyze these transcriptome data. In addition, several existing methods allow
inference of functional variations among samples using gene sets with known biological
functions. However, it remains challenging to analyze transcriptomes with reduced
dimensions that are interpretable in terms of dimensions’ directionalities, transferrable
to new data, and directly expose the contribution or association of individual genes.
In this study, we used gene set non-negative principal component analysis (gsPCA)
and non-negative matrix factorization (gsNMF) to analyze large-scale transcriptome
datasets. We found that these methods provide low-dimensional information about the
progression of biological processes in a quantitative manner, and their performances are
comparable to existing functional variation analysis methods in terms of distinguishing
multiple cell states and samples from multiple conditions. Remarkably, upon training
with a subset of data, these methods allow predictions of locations in the functional
space using data from experimental conditions that are not exposed to the models.
Specifically, our models predicted the extent of progression and reversion for cells
in the epithelial-mesenchymal transition (EMT) continuum. These methods revealed
conserved EMT program among multiple types of single cells and tumor samples.
Finally, we demonstrate this approach is broadly applicable to data and gene sets
beyond EMT and provide several recommendations on the choice between the two
linear methods and the optimal algorithmic parameters. Our methods show that
simple constrained matrix decomposition can produce to low-dimensional information in
functionally interpretable and transferrable space, and can be widely useful for analyzing
large-scale transcriptome data.
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INTRODUCTION

Recent developments in RNA-sequencing technology have
enabled the collection of large-scale transcriptome data at high
speed. For example, single-cell RNA-sequencing (scRNA-seq)
data of many biological systems have been accumulating
rapidly and provide opportunities to gain insights into complex
biological processes at both the systems level and the single-
cell resolution. Together with the advances in experimental
techniques, the recent development of computational methods,
including those for dimensionality reduction, allow the
visualization and analyses of high-dimensional transcriptome
data in low-dimensional space. For example, t-distributed
stochastic neighbor embedding (tSNE) and Uniform Manifold
Approximation and Projection (UMAP) have been instrumental
to tackling challenges in transcriptome data visualization and
are widely used in biomedical research (Van der Maaten and
Hinton, 2008; Stein-O’Brien et al., 2018; Becht et al., 2019;
Luecken and Theis, 2019). However, dimensionality reduction
methods usually do not provide low-dimensional space that is
directly interpretable in terms of biological functions: while these
approaches cluster related samples, the positioning of samples
along the derived dimension may not correspond to the degree
of any biological process even if a predefined gene set with
similar functions is chosen before the reduction. In addition,
the contribution or significance of individual genes related to
the derived dimension cannot be accessed directly with these
methods. The lack of interpretability of the dimensions makes
it challenging to visualize and analyze the progression of the
samples (cells) in known biologically functional space.

Existing methods for functional quantification, such as
Z-score and Gene Set Variation Analysis (GSVA; Hänzelmann
et al., 2013), are useful for obtaining “functional scores” with the
expression levels of multiple genes involved in the same biological
process. However, these methods do not have transferability in
that the scoring systems obtained with one dataset cannot be used
to analyze other datasets directly. This limits the utility of these
methods in predicting the progress of new data points, and in
studying the relationships between functional spaces in different
experimental settings.

One example of cellular processes that contains crucial
quantitative information is epithelial-mesenchymal transition
(EMT). While extreme changes of cell fate and morphology
occur in the classical form of EMT, recent studies with cancer
and fibrosis showed that partial EMT involving intermediate
states are prevalent, and it may be responsible for pathogenesis
(Pastushenko et al., 2018). To quantify the degree of EMT in
EMT-induced cell lines and tumor samples, several previous
studies analyzed transcriptomic data and their projections onto
epithelial (E) and mesenchymal (M) dimensions (Tan et al.,
2014; George et al., 2017; Cursons et al., 2018; Chakraborty
et al., 2020; Panchy et al., 2020; Hirway et al., 2021). Recently,
scRNA-seq analysis has shown that the progression of EMT
is highly dependent on inducing signals and cell types (Cook
and Vanderhyden, 2020). However, it remains challenging to
analyze rapidly accumulating transcriptome information on
EMT for obtaining biological insights across multiple conditions.

Improvement of methods for reducing dimensions of expression
data in a functionally meaningful manner is necessary.

In this study, we used gene set filtered variants of both
non-negative principal component analysis (gsPCA) and non-
negative matrix factorization (gsNMF) to analyze progression of
EMT in single cells at multiple timepoints. We show that these
methods describe large-scale transcriptome data of multiple EMT
stages in low-dimensional and functionally interpretable space.
Taking advantage of the methods’ transferability, we constructed
dimensionality reduction models that can predict the stages
of EMT with data from timepoints that were not used for
model construction. We show that these linear methods can be
used to compare functional spaces across multiple experimental
conditions. Furthermore, we demonstrate the utility of our
approach in visualizing drug responses in heterogeneous single
cell data. With a validation scheme for rigorous testing, we
provide recommendations for the choice of the methods and
the parametric settings. Overall, our work provides a new
toolbox for analyzing large-scale transcriptome data with efficient
visualization and functional quantification.

RESULTS

Overview of Method and Performance
Evaluation
The overall goal of our method is to find low-dimensional
space of transcriptome data that has both biologically meaningful
directionality and the ability to represent data points not used
in the procedure to derive the space. This requires one or more
preselected functional gene sets, which are readily available in
publicly available databases such as Molecular Signature Database
(Liberzon et al., 2011), and can be defined manually (Figure 1).
We propose two linear approaches of matrix decomposition:
gsPCA and gsNMF (see “Materials and Methods” section for
details). Briefly, gsPCA finds the optimal component (projection)
by maximizing the variance of the projected data points under the
constraint that each functional gene has a non-negative loading
value. For gsNMF, the gene-set-filtered transcriptome matrix is
approximated by the product of two non-negative matrices, one
of which represents a “meta” expression profile across samples,
while the other represents the non-negative coefficients of the
functional genes (the procedure for obtaining the number of
components is described in Supplemental Methods). Following
gsNMF, the leading component is selected for subsequent
analyses (see “Materials and Methods” section). With either
gsPCA or gsNMF, transcriptome data can be projected onto an
axis whose direction unambiguously represents expression of the
gene set and can be interrogated to reveal the contribution or
association of individual genes in the set to scores along the axis.

To test the performance of gsPCA and gsNMF in capturing
biological progression through functional space, we first used
time-course datasets containing single cells treated with EMT-
inducing signals for various periods of time (Cook and
Vanderhyden, 2020). In addition to the biological importance
of the stepwise progression in EMT (Pastushenko et al., 2018;
Kröger et al., 2019), the time labels in the datasets allow
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FIGURE 1 | Schematic of the gene set non-negative matrix factorization
(gsNMF)/gene set non-negative principal component analysis (gsPCA)
analysis process. A diagram of the analysis process used in this study
beginning with input data in the form of sequencing data and gene sets.
gsNMF/gsPCA is applied to this data to generate a functional scoring or
space in the form of component scores (see “Materials and Methods” section
for details). These scores can be used in two ways. First, without further data
labels, scores can be used to look at relationships between or across
biological processes beginning with low-dimensional visualization to identify
trends and putative groups. Quantities such as the correlation between
different functional scores can be computed for analysis. In addition, the
transferable nature of these models means that they can be used to infer the
position of new data points and contributions of individual genes, which allows
assessment of their importance. Screening can be done both between gene
sets and within gene sets. Secondly, when data labels are present, different
metrics can be used to assess the performance of a functional score in terms
of capturing variance: the common language effect size or f-probability can be
used to evaluate how well the functional score separates two distinct
populations while the variance explained or R2 can evaluate how much of the
variation of a numeric variable representing biological progression, such as
time, that the functional score can explain across the data.

us to evaluate the performance of the functional projection.
Specifically, we used two metrics for the evaluation: the coefficient
of determination (R2) for quantifying how well the projected
values explain the time labels, and the common language effect
size (f ) for measuring the separation between two neighboring
subsets of data with two labels (McGraw and Wong, 1992;
See “Materials and Methods” section). The usage of R2 is only

possible when the labels are numerical, while f can be used
with any type of label (Figure 1). Note that our overall goal
is not clustering the data points. Instead, we aim to represent
the progression along biologically meaningful axes. In addition,
neither gsPCA nor gsNMF requires data labels for analysis. The
two metrics are only used for evaluation. In later sections, we
will show analyses with additional data sets in which labels are
categorical and the biological processes are non-EMT.

gsPCA and gsNMF Capture Cell State
Progression in Low Dimensional
Functional Space
To show the performance of the proposed methods, we first
used two signature gene sets whose high expressions represent
the epithelial (E) and mesenchymal (M) states, respectively (Tan
et al., 2014; Watanabe et al., 2019; Panchy et al., 2020). With
the E and M gene sets, we first performed gsPCA and gsNMF
on time-course single-cell transcriptomes of TGF-β-treated A549
cells using two components per model for each gene set
(Cook and Vanderhyden, 2020). The two gene sets contain 179
and 114 genes, respectively, in the A549 data set. We then
projected the single-cell data from the first five time points,
which represent continuous EMT progression, onto the leading
dimension for each gene set. This produced two-dimensional
plots with dimensions that can be viewed as the progression
of cell states in the epithelial and the mesenchymal spectrums
(Figures 2A,B). We then compared the performance to two
widely used approaches: Z-score and GSVA (Figures 2C,D).
We found that gsPCA and gsNMF both better explained the
overall variance of time across the first five time points of EMT
progression (Adjusted R2 = 0.46 and 0.48, respectively) than
Z-score (Adjusted R2 = 0.31) and GSVA (Adjusted R2 = 0.08).
Likewise, when considering neighboring time points, we found
that E-scores tended to decrease and M-scores tended to
increase with time of TGF-β treatment (Figure 2E), with both
scores significantly separating all neighboring time points for
gsPCA and gsNMF and yielding higher f probabilities than
other methods in all but one case (E-scores at 3 vs. 7 days,
Figure 2F). This suggests that gsPCA and gsNMF not only serve
as visualization methods of functional space with defined gene
sets, but also describe heterogeneous cell populations containing
transitional information in a rigorous fashion. Between the two
methods, we found the gsNMF performed better with regard to
both overall variance (Adjusted R2 0.48 vs. 0.46) and separating
time points (Figure 2F) than gsPCA. However, gsNMF requires
selecting the leading dimension based directly on correlation
with time of EMT progression, suggesting that gsPCA may be
more reliable in a purely unsupervised setting (see “Materials and
Methods” section).

In the next few sections, we show various utilities of
these linear methods based on their transferability and
high-performance features. Because gsNMF gives the best
performance with the A549 EMT data set, our discussion will
focus on results obtained with gsNMF. The results using gsPCA,
which had similar performance in all cases, are included in
Supplementary Materials.
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FIGURE 2 | Visualization of epithelial-mesenchymal transition (EMT) progression in TGF-β induced A549 cells by multiple scoring methods. (A–D) Contour plots of
gene set scores of E (X-axis) and M (Y-axis) genes from four different scoring methods, gsPCA (A), gsNMF (B), z-score (C), and GSVA (D). Color indicates the time
of TGF-β induction from 0 days (dark green) to 7 days (dark purple). Circles indicate the mean E- and M-score of samples from each time point and the associated
error bars show the standard deviation. (E) A box-plot showing the distribution of E (red) and M (blue) scores across all five time points of TGF-β induction from the
gsNMF model. Whiskers indicate the 1.5 inter-quartile range of each distribution while the red points indicate outliers beyond this range. (F) Bar chart of the f
probability values for E (top) and M (bottom) scores between all consecutive pairs of time points. Color indicates the method used to produce the score: red is
z-score, orange is GSVA, blue is gsPCA, and purple is gsNMF. Bars marked by an “x” indicates that the score did not significantly separate the samples from those
time points (Mann–Whitney U-test, p < 0.05).

Prediction of Cell States With Data From
New Conditions
The transferability of gsPCA and gsNMF methods allows the
projection of new high-dimensional data points onto previously
derived functional dimensions. Similarly, these methods can be
used to derive functional dimensions with partial information
of the biological process in terms of its stages. To show the
predictive power of gsNMF, we removed samples from the 0-,
1-, and 7-day (including revertant) time points in the A549 EMT
data (i.e., the start, middle, and the end of the continuous portion
of TGF-β induction) and then performed the dimensionality
reduction. We found that the low-dimensional functional space
was robust with respect to the removal, regardless of whether
the missing time point is in the middle of the progress or at

the extremes (Figures 3A–D), such that when we projected the
removed data points onto the space derived from a partial dataset,
their positions were highly correlated with their positions when
they were included in the data set [Pearson correlation coefficient
(PCC > 0.95)]. However, while the inferred 1-day samples were
similarly separable from samples in 8-h (f = 0.81 for E, 0.84
for M) and 3-day (f = 0.75 for E, 0.79 for M) time points, we
observed reduced separability between the both inferred 0-day
vs. 8-h (f = 0.52 for E, 0.63 for M) and 3-day vs. inferred 7-
day (f = 0.53 for E, 0.55 for M) time points, with E-scores not
significantly separating the first and the last time points (Mann–
Whitney U-test, p = 0.13 and 0.16, respectively). We also applied
the same inference procedure to samples which were exposed to
a transient EMT-inducing signal and allowed to revert. However,
because the 8- and 24-h reversion samples largely overlap with
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FIGURE 3 | Predicting A549 samples from specific time points using gsNMF. (A) Scatter plot of E (X-axis) and M (Y-axis) scores for all TGF-β induction samples
using gsNMF. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (B–D) Scatter plot of 0-day (green, B),
1-day (yellow, C), and 7-day samples (purple, D) inferred using a gsNMF model built with all other time points (gray). (E) A scatter plot of TGF-β induction samples
with TGF-β reversion samples (i.e., 7 days induction followed by removal from TGF-β). Induction samples are labeled as in panel (A), while reversion samples are
colored blue, with darker shade indicating longer time since removal. (F) Scatter plot of 3-day reversion samples (dark blue) inferred using a gsNMF model built with
all non-reversion time points (gray).

7-day (hence their removal for 7-day inference, Figure 3E), we
focused on inferring 3-day reversion samples after performing
dimensionality reduction on the data set without any reversion
samples. We found that 3-day reversion samples were positioned
in the middle of the EMT spectrum, consistent with when they
were included in functional space construction (PCC = 0.99
for E and 0.98 for M, Figure 3F). Additionally, the inferred 3-
day reversion samples were similarly separable from the 7-day
samples (f = 0.91 for E, 0.91 for M) as when they were when
included in functional space construction (f = 0.90 for M, 0.91 for
M). We obtained similar results using gsPCA when inferring the
position of samples from missing time points (Supplementary
Figure 1), but neither E- nor M-scores significantly separated
the end points (0-day vs. 8-h and 3- vs. 7 day). These results

suggest that gsPCA and gsNMF can predict cell states of new data
without retraining the model, and that these methods can be used
to predict new cell states that have not been observed directly,
though it may be difficult to separate these samples when they
are positioned the edge of the spectrum and/or when the new
samples are closely related to existing samples.

Using Functional Space Across Cell
Lines
The transferability of gsNMF can be extended to data
from different cell lines. We performed gsNMF on single-
cell transcriptomes of TGF-β-treated DU145 from Cook and
Vanderhyden (2020) using the same procedure as A549 and
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FIGURE 4 | Transferring gsNMF models between A549 and DU145 TGF-β induced samples. (A–D) Scatter plot of E (X-axis) and M (Y-axis) scores for different
combinations of data and gsNMF model: (A) A549 model on A549 data, (B) DU145 model on A549 data, (C) A549 model on DU145 data, and (D) DU145 model on
DU145 data. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (E,F) Comparison of E-scores of
samples from A549 (E) and DU145 (F) data. The X-axis is the E-score from using the model from the same data set (A549 on A549 and DU145 by DU145), while
the Y-axis is the E-score from the opposite model (DU145 on A549 and A549 on DU145). Samples from different time points are indicated by color going from 0
days (dark green) to 7 days (dark purple). (G,H) Comparison of M-scores of samples from A549 (G) and DU145 (H) data. The X-axis is the M-score from using the
model from the same data set (A549 on A549 and DU145 by DU145), while the Y-axis is the M-score from the opposite model (DU145 on A549 and A549 on
DU145). Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple).

obtained a moderate explanation of variance in time of EMT
progression using the E and M dimensions (Adjusted R2 = 0.31).
We then inferred the position of the five continuous time
points in the A549 data set using the DU145 model and vice
versa (Figures 4A–D). Transferred models (DU145 on A549
and A549 on DU145) were able to separate the individual time
points, but overall performance decreased as they can explain
only part of the variance seen in the original models (Adjusted
R2 = 0.30 for DU145 on A549 and 0.25 for A549 on DU145).
Therefore, it was expected that the individual sample scores
would be positively correlated between models along both the
E (Figures 4E,F) and M dimensions (Figures 4G,H). However,
while the correlations between all pairs of scores were significant
(minimum p = 2.7e−73), the correlation between E-scores was
weaker overall and worse for models of DU145 (PCC = 0.31) than
models of A549 (PCC = 0.46). Comparably, the M-scores for both
models of A549 (PCC = 0.84) and models of DU145 (PCC = 0.84)
were more highly correlated and consistent between models.
However, none of the sample scores between A549 and DU145
models were as correlated as inferred sample scores from missing
point and the complete A549 model (PCC > 0.95). This suggests
a reduced transferability across cells lines compared to within
cells lines. In addition, across the data sets we used, changes along

the M dimension were more consistent than the E dimension. We
observed similar results using gsPCA, including M-scores being
more correlated (PCC, A549 = 0.92, DU145 = 0.94) than E-scores
(PCC, A549 = 0.76, DU145 = 0.72; Supplementary Figure 2).
This is consistent with the fact that the same inducing agent was
used across all cell lines, and also implies that inducing EMT in
different cell types may yield more consistent changes in M genes
compared to E genes.

Using Functional Space Across
Experimental Conditions
In addition to predicting the locations in the functional space
across cell lines, gsPCA and gsNMF can be used across both
experimental conditions and cell types. To test the cross-
condition transferability, we first used our low-dimensional
functional EMT space for A549 and DU145 cells to analyze
tumor transcriptomes measured with bulk RNA-seq (The Cancer
Genome Atlas, TCGA). To perform the most comparable
transfer, we used lung adenocarcinoma (LUAD) and prostate
adenocarcinoma (PRAD) data, which correspond to A549 and
DU145 in terms of tissue type. We considered transfers between
both similar (projecting LUAD data by a A549-trained model,
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FIGURE 5 | Transferring gsNMF models to TCGA data. (A,B) Scatter plots of E-scores for PRAD (A) and LUAD (B) from transferring gsNMF models built on A549
(X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA based E-score of the TCGA data set. (C,D) Scatter plots of M-scores for
PRAD (C) and LUAD (D) from transferring gsNMF models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA
based M-score of the TCGA data set.

and PRAD by a DU145-trained model) and dissimilar (LUAD
by DU145 and PRAD by A549) cell types. We found that the
low-dimensional functional space obtained with in-vitro data
captured tumor sample heterogeneity in the EMT spectrum
when compared to our previous GSVA analysis of the same
data (Figure 5). Overall, the original E- and M-scores were
significantly correlated with the A549 models in all cases (smallest
p = 2.8e−34). Models from both cell lines showed similar
correlation with the original GSVA scores, except in the case
of PRAD scores, where the DU145 model was better correlated
than the one built on A549 data (Table 1). We also observed
that M-models built on A549 and DU145 data were more similar
to each other than E-models, and we obtained similar results
with gsPCA (Supplementary Figure 3), which showed greater
overall correlation with GSVA scores, but the same pattern
of reduced correlation for the A549 model of PRAD E-scores
(Supplementary Table 1).

It should be noted that these results are partly due to
higher average correlation of expression of EMT genes in
bulk RNA-seq data (average PCC = 0.28 LUAD, 0.38 PRAD

for all pairs of M-genes, average PCC = 0.18 LUAD, 0.10
PRAD for E-genes), compared to the scRNA-seq data (average
PCC = 0.01 in all cases). This is expected given that bulk
RNA-seq is derived from populations rather than individual
cells, but as a result, the effect of differentially weighing
individual genes across models and components within models
is reduced. This would explain the stronger correlation of
M-scores between A549 and DU145 derived models, as well as
the reduced performance of A549 on PRAD E-gene data, which
is the most variable bulk RNA-seq data set. Yet, as the same
time, this would suggest the variance present in PRAD bulk
RNA-seq data is more similar to the model built on DU145
scRNA-seq data, than scRNA-seq data from a more dissimilar
background. This also has implication for comparing multiple
model components as they tend to be more similar in the bulk
RNA-seq model despite if they were anti-correlated (gsNMF)
or relatively uncorrelated (gsPCA) in the original scRNA-seq
model or other scRNA-seq data (see Supplementary Table 2).
Nonetheless, we have shown that the transferred models are,
overall, consistent with the prior analysis of TCGA data and
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detected the expected variance in bulk RNA-seq data when it
is present.

Using Functional Space Across Spatial
and Temporal Progression
We next examined if gsNMF can produce transferrable models
that reveal both spatial and temporal progression of EMT. Using
single-cell RNA-seq, McFaline-Figueroa et al. (2019) previously
found that epithelial cells exhibit an E to M spectrum from the
inner position of a colony to the outer position. This dataset
that contains binarized identities (inner and outer) obtained
with macro-dissection (defined as spatial EMT data) from two
experiments, one in which cells were allowed to migrate without
external induction of EMT (Mock), and one in which EMT
was induced with TGF-β (TGF-β). Since there are only two
populations in this data set, the leading dimension for E- and
M-scores was chosen to maximize the separation based on the
f probability. Overall, three analyses were performed for each
data set: spatial data with its own gsNMF model, spatial data with
the model from the other spatial data set (TGF-β on Mock and
Mock on TGF-β), and spatial data with A549 time series model
(Figure 6). As with our previous results, the best separation of
inner and outer data points was observed when Mock (f = 0.61
for E, 0.73 for M) and TGF-β (f = 0.77 for E, 0.82 for M) data sets
had their own model applied to them. However, for Mock data,
the TGF-β model (f = 0.64 for E, 0.69 for M) outperformed the
A549 model (f = 0.45 for E, 0.60 for M) on both dimensions and,
in fact, the E dimension of the A549 model did not effectively
separate inner and outer points in the Mock data (p = 0.99).
In comparison, the Mock model better separated TGF-β inner
and out points in the E direction (f = 0.68 for E, 0.63 for M),
while the A549 model better separated them in the M direction
(f = 0.59 for E, 0.76 for M). gsPCA models gave similar results,
including the A549 model yielding better performance along the
M-dimension (f = 0.76) for TGF-β data than Mock data (f = 0.68;
Supplementary Figure 4).

The fact the A549 model better separated TGF-β spatial
points along the M dimension than the Mock model, but did
not outperform TGF-β on the Mock model suggests that there
is conserved TGF-β induced M-gene expression regardless of
context. To explore the basis of this similarity in M-scores,
we compared the coefficient matrices (H, see “Materials and
Methods” section) between Mock, TGF-β, and A549 gsNMF
models, which represent the weights of individual genes along
the components. We found little correlation between A549
and spatial E-gene coefficient values for the lead dimension
(PCC = −0.02. p = 0.82 for Mock; PCC = 0.06, p = 0.57 for

TABLE 1 | Pearson correlation coefficients of E and M scores between GSVA,
A549, and DU145 models of TCGA data.

TCGA data set GSVA vs. A549 GSVA vs. DU145 A549 vs. DU145

PRAD E-genes 0.49 0.72 0.43

LUAD E-genes 0.72 0.71 0.52

PRAD M-genes 0.85 0.84 0.90

LUAD M-genes 0.62 0.65 0.86

TGF-β), however, while there was also little correlation between
A549 and spatial M-gene coefficient values for the Mock model
(PCC = 0.02, p = 0.83) there was significantly positive correlation
for the TGF-β model (PCC = 0.48, p = 8.8e–7). Additionally,
we examined which genes were in the top 10th percentile of
coefficient values across models and found that the A549 and
TGF-β models share six M-genes (FN1, LGALS1, SERPINE1,
TAGLN, TPM2, and VIM), compared to three E-genes (ELF3,
PERP, and SLPI). Furthermore, another four E-genes (AREG,
KRT18, KRT8, and NQO1) were in the top 10th percentile of
A549 E-gene coefficient values, but the bottom 10th percentile
of TGF-β E-gene coefficient values. We observed similar results
from gsPCA, finding significant correlation of loading values
only between A549 and TGF-β M-models (PCC = 0.61, p = 5.8e–
11) with many of the same genes in the top 10th percentiles
of both models (FN1, TPM2, VIM, TAGLN, GLIPR1, and
LGALS1). Notably, the M-genes with high coefficient values in
both A549 and TGF-β models across both A549 and TGF-β
models are key regulators/inducers of EMT (FN1, LGALS1, and
VIM; Mendez et al., 2010; Griggs et al., 2017; Zhu et al., 2019)
or specific activators of migratory behavior in epithelial/cancer
cells (TAGLN, TPM2; Lee et al., 2010; Shin et al., 2017).
Conversely, while KRT8 and KRT18 are considered epithelial
cytokeratins (Tomaskovic-Crook et al., 2009), both of these genes
undergo an initial increase in expression in the A549 time-
course (Supplementary Figure 5), compared to largely unaltered
distributions across the inner and outer samples of migration
data. This is consistent with previous observations that, both
KRT8 (Wang et al., 2020) and KRT18 (Zhang et al., 2019) are
over-expressed/aberrantly expressed in certain human cancers
and such expression is associated with cancer progression/poor-
prognosis. This potentially reflects intermediate EMT states
caused by full or partial arrest of the process at an early timepoint,
independent of the resulting migratory potential of the cells.
Coefficient values for all genes in each model can be found in
Supplementary Table 3.

Together, these results suggest a coherence of the progression
of the EMT program in both the spatial and temporal context
with regard to M-genes, while E-gene progression appears
to be more sensitive to context, being only transferable
between the two spatial data sets. The coefficient values of
genes across both contexts offers insight into the difference
in transferability between E and M models: high scoring
M-genes across both contexts constitute important drivers of
EMT/migration, suggesting common regulatory mechanisms,
while the differential expression of KRT8 and KRT18 across time,
but not space, suggests E-gene expression can be sensitive to
biological context. Finally, these results highlight the usefulness
of the transferability of gsPCA and gsNMF outside of a time
series context, where performance may need to be evaluated on
discrete groups.

Characterizing Relationships Among
Multiple Functional Spectrums
To test the capacity of gsNMF to infer functional spaces across
a broader range of gene sets and data, we first returned to
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FIGURE 6 | Transferring gsNMF models between temporal and spatial data sets. (A–C) Scatter plots of E (X-axis) and M (Y-axis) scores for Mock spatial data from
gsNMF models built on different data sets: Mock spatial data (A), TGF-β induced spatial data (B), and TGF-β induced A549 temporal data (C). The color of the
sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue). (D–F) Scatter plots of E (X-axis) and M (Y-axis)
scores for TGF-β spatial data from gsNMF models built on different data sets: TGF-β induced spatial data (D), Mock spatial data (E), and TGF-β induced A549
temporal data (F). The color of the sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue).

the A549 data set and examined the expression changes of
multiple gene sets across EMT progression. Taking advantage
of the high-efficiency of this method, we began with 5455 C2
curated gene sets from the Molecular Signature Database (see
“Materials and Methods” section) and applied a gsNMF model
to A549 data for each. For simplicity, we used a two-component
model, but we applied stricter convergence and selection criteria
because of the diversity of gene set size and coverage by the
data set (see “Materials and Methods” section). Overall, 867
gene sets (15.9%) had a leading dimension whose magnitude
of correlation (PCC) was > 0.5 (Supplementary Table 4). As
such, we expected that functional spaces constructed from highly
correlated gene sets should show similar results to our original E
vs. M functional space.

To construct unambiguous functional spaces, we initially
focused on pairs of up/down regulated gene sets where the
leading dimensions had a high magnitude of correlation
(PCC), but opposite sign, in order to emulate our original
E/M model of EMT progression for A549 (Figure 7A).
For example, two pairs of gene sets, up regulation
or down regulation in response to KRAS knockdown
(SWEET_KRAS_TARGETS, Figure 7B) and up regulation

or down regulation in low-malignancy ovarian cancer relative
to control (WAMUNYOKOLI_OVARIAN_CANCER_LMP,
Figure 7C), yielded functional spaces similar to E and M genes
(Figure 7A) and captured a similar amount of variance explained
among non-revertant cells (R2 = 0.48 and 0.49, respectively).
Furthermore, the results suggest that EMT progression is
correlated with expression of genes normally repressed by
KRAS, a pro-proliferation signal, and anti-correlated with the
expression of genes associated with tumorigenic, but non-
metastatic ovarian cancer, consistent with the idea of the E
state of EMT being pro-proliferative and the M state being
pro-migratory. However, not all pairs of gene sets provide
well defined functional spaces: for example, the gene set
down-regulated in metastatic vs. non-metastatic head and
neck tumors (RICKMAN_METASTASIS_DN) produced a
strong anti-correlated leading dimension (PCC = −0.63), but
the leading dimension of the up-regulated variant has a far
smaller magnitude of correlation (PCC = 0.34). However,
combining the metastatic down-regulated gene set with
another correlated gene set, genes silenced during angiogenesis
(HELLEBREKERS_SILENCED_DURING_TUMOR_ANGIOGE
NESIS, PCC = 0.66), generated a functional space of EMT

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 719099

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-719099 August 16, 2021 Time: 13:59 # 10

Panchy et al. Functional Projection of RNA-Sequencing Data

progression competitive with E and M genes (Figure 7D,
R2 = 0.48). As such, functional space constructs need not be
confined to reciprocal or connected gene sets, though this does
not excluded the possibility of an underlying, common genetic
basis between these functional spaces. Nevertheless, the divergent
origins of the gene sets in terms of the biological processes they
represent demonstrates the breadth over which the functional
significance of variation can be explored using this methodology.

To move beyond EMT associated data and gene sets, we
next used gsNMF to analyze data from McFarland et al. (2020)
which is composed of 7,245 cells with heterogeneous origins
treated with trametinib for 3, 6, 12, 24, or 48 h as well
as an untreated control (0 h). Because this data set mixes
24 cell lines from several different origin tissues and focuses
specifically on the response to a cancer drug, we focused our
exploration of functional spaces on 1,022 gene sets derived from
the C6 database from Molecular Signature Database as well
as the drug resistant genes identified by Wang et al. (2017)
and their overlapping KEGG pathways and GO terms (see
“Materials and Methods” section). Overall, 57 gene sets (5.6%)
had a leading dimension whose magnitude of correlation (PCC)
was >0.5 and relaxing this threshold to >0.4 yielded only
200 (19.6%) gene sets, suggesting that the explained temporal
variance in this data set is lower than that obtained with A549
(Supplementary Table 5). Nevertheless, using positive regulation
of gene expression (GO:0010628) and negative regulation of gene
expression (GO:0010629), we were able to a functional space
of trametinib response with similar performance (R2 = 0.30,
Figure 8A) to our model of EMT progression in DU145 data
(R2 = 0.31). Additionally, a number of oncogenic signatures
which were positively correlated with trametinib response,
though there were no up/down regulated pairs that with leading
dimensions in opposed directions. Instead, we selected two
oncogenic signatures, down regulation in response to KRAS
over-expression (KRAS.600_UP.V1_DN) and down regulation
in response to LEF over-expression (LEF1_UP.V1), whose
leading dimension were strongly correlated with trametinib
response (PCC = 0.54). We then took the negatively correlated
component of the corresponding up regulation gene sets models
(KRAS.600_UP.V1_UP and LEF_UP.V1_UP), even though
the magnitude of the positively and negatively correlated
components was similar (difference the absolute value of
PCC ≤ 0.005). This process gave functional spaces which
improved variance explained over the previous gene regulation
model (R2 = 0.35 and 0.36, respectively, Figures 8B,C). Together,
these results suggest suppression of gene expression in general
and of oncogenes specifically in response to trametinib treatment,
consistent with the results in McFarland et al. which observed
greater enrichment of KRAS responsive genes among down-
regulated genes in later time points relative to earlier ones. As
with A549 data, we were also able to combine distinct functional
sets, response to drug (GO:0042493, PCC = 0.58) and positive
regulation of cell cycle (GO:0045787, PCC = −0.49) to explain
an comparable amount of variance in expression as the reciprocal
onco-gene sets (R2 = 0.36, Figure 8D). As such, while the amount
of variance we can capture with our models is dependent on the
data set, our approach overall is capable of producing functional

spaces that broadly characterize variance in expression across
diverse data and gene sets.

DISCUSSION

Previous methods that aimed to address the challenges of
visualizing single-cell data in functional space were primarily
based on weighted sum of expression values or Kolmogorov–
Smirnov test with full datasets (Hänzelmann et al., 2013;
DeTomaso and Yosef, 2016). These methods are useful to
analyzing samples with functional gene sets, they do not provide
transferability which is essential for predicting cell states with
existing models and new data. We showed that constrained
linear transformation enables good performance in depicting cell
states with straightforward interpretation in functional space and
satisfactory efficiency. While more sophisticated methods such
as deep generative models have potentials to address similar
problems, current methods primarily focus on the interpretability
in terms of inter-sample distances in low dimensions rather than
the dimensions themselves (Ding et al., 2018; Lopez et al., 2018),
and we expect that the gsPCA and gsNMF methods are more
efficient than models based on non-linear connectivity.

Factorization approaches like PCA and NMF have previously
been applied to the problem of gene expression, with NMF in
particular having been used to deconvolute expression patterns
scRNA-seq data sets (Chen and Zhang, 2018; Fujita et al., 2018;
Min et al., 2018; Kotliar et al., 2019; Zhang and Zhang, 2019),
but these approaches have primarily focused on the unsupervised
clustering of samples and/or for de-novo module discoveries
at relatively high dimensionality (n > 10). In contrast, our
approach suggests there is a utility in applying these factorization
approaches to interrogating the relationship between known
gene modules and data with implicit structure and/or separable
populations of samples, particularly when assessing a single
biological process (EMT) across multiple contexts (e.g., cell line,
time and space), such that the simplicity of low-dimension space
(n = 2) can be leveraged for visualization and analysis.

In this work we have found that conserved EMT gene
expression signatures can be used to describe stages of EMT in
multiple cell lines (e.g., A549 and DU145), and these signatures
not only capture the subpopulation heterogeneity resulting from
differential times of treatment with EMT-inducing signals such
as TGF-β, but also reflect the EMT program driven by spatial
heterogeneity with cell populations (McFaline-Figueroa et al.,
2019). These results are consistent with the existence of conversed
EMT program across cell lines (Cook and Vanderhyden, 2020),
but do not contradict the idea of context specific expression
as models trained and applied to the same data set always
explained more variance in EMT progression. The coexistence
of a common EMT signature and context specific expression is
further supported by the observation that M-scores were more
consistent and better separate data across different contexts of
EMT than E-scores, and the related observation that M-gene
component values were correlated across spatial and temporal
models, while E-genes were not. This suggests that M-gene
induction by TGF-β is consistent across cellular contexts, while
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FIGURE 7 | Visualization of EMT progression in TGF-β induced A549 cells by multiple gene sets. (A–D) Contour plots of A549 functional space generated using
gsNMF with different gene sets: E vs. M (A), KRAS knockdown up and down (B), non-malignant ovarian cancer up and down (C), and metastasis downregulation
vs. angiogenesis downregulation (D). Color indicates the time of TGF-β induction from 0 days (dark green) to 7 days (dark purple). Circles indicate the mean gene set
score of samples from each time point and the associated error bars show the standard deviation.

changes in E-gene expression are more variable, possibly due to
greater sensitivity to cell line, environmental context, or other
initial conditions effecting the cell prior to induction.

The transferability of models across EMT context indicates the
synergy between spatial arrangement of cells and external signals
(e.g., TGF-β) in determining the stages of EMT. In addition,
we found that the functional dimensions obtained with TGF-
β can serve as reasonable approximations for the positioning
of tumor transcriptomes in the EMT spectrum. Similar to
the EMT spectrum, many biological processes involve stepwise
changes of gene expression programs. A possible mechanism
underlying these non-binary programs is the feedback-driven
formation of stable intermediate cell states (Yui and Rothenberg,
2014; Ye et al., 2019). With the rapid advances of the single-
cell technology, transcriptome-wide gene expression data will
become available for more biological systems. We expect
that our functional projection methods can be widely useful
for visualizing and analyzing these data. In particular, the
transferability of the models can be a powerful feature for
interrogating the relationships among different experimental
conditions and cell types.

MATERIALS AND METHODS

Gene Expression Data Sources
Single-cell RNA-sequencing data and meta data for A549 and
DU145 cell lines were obtained from Cook and Vanderhyden
(2020). In brief, we obtained pre-processed SeuratObjects for
A549 and DU145 TGF-β as .rds data files and extracted
expression data for E, M, all genes using the ScaleData function
from Seurat to regress out mitochondrial gene expression, total
unique reads in a sample, cell cycle gene expression, and
batch effects as well as center and scale each data set across
genes (Stuart et al., 2019). For McFaline-Figueroa et al. (2019)
spatial data we obtained aggregated count data from GEO in
the form of a pre-processed .cds file (GSE114687). We then
dropped genes expressed in less than 50 cells (∼1% of each
data set) from Mock and TGFB1 and split samples into Mock
and TGFB1 subset for subsequent steps. Because we planned
to compare models from these data to those from A549 and
DU145, we followed the preprocessing procedure from Cook
and Vanderhyden: we normalized the Mock and TGFB1 data
sets independently in Seurat using the NormalizeData function
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FIGURE 8 | Visualization of trametinib treatment data by multiple gene sets. (A–D) Contour plots of trametinib treatment functional space generated using gsNMF
with different gene sets: positive vs. negative gene regulation (A), KRAS overexpression up and down regulation (B), LEF overexpression up and down regulation
(C), and positive cell-cycle regulation vs. drug response (D). Color indicates the time of trametinib treatment from 0 h (dark green) to 48 h (dark purple). Circles
indicate the mean gene set score of samples from each time point and the associated error bars show the standard deviation.

and then used ScaleData to regress out mitochondrial gene
expression, total unique reads in a sample, and cell cycle gene
expression as well as scale each data set across genes. Finally,
we obtained Cell Ranger output for trametinib time-course data
from McFarland et al. (2020) and processed it in R using the
Read10X function. We dropped the DMSO time course, and used
the Untreated samples as time 0 as well as annotations from the
original manuscript to eliminate low quality cells and then filtered
genes expressed in less than 73 cells (∼1% of the data set). Pre-
processing was done in Seurat as with using NormalizeData and
ScaleData as previously described, except that we additionally
regressed out the effect of each different cell line used in the
experiment, but did not regress out cell-cycle gene expression as
the original manuscript suggested that cell cycle disruption may
be induced by trametinib treatment.

TCGA bulk RNA-seq data was obtained from TCGAbiolinks
(Colaprico et al., 2016; McFaline-Figueroa et al., 2019). Raw
counts were transformed to log2TPM with a pseudo-count of 1
using gene models for the hg38 annotation of the human genome
obtained from RefSeq (O’Leary et al., 2016).

Non-negative PCA and NMF
Gene set non-negative principal component analysis
uses the non-negative approach to PCA pioneered by

Sigg and Buhmann (2008). In brief, the vector of weights,
w, used to define the first principal component of PCA is defined
such that it maximizes the variance of the first component, i.e.:

arg maxw wTCw

Where C is the covariance matrix of the original data set X and
w is unit vector (||w||2 = 1). In our case, X is an m by n matrix
of expression values where m is the number of samples and n is
the number of genes in the selected gene set. This method for
determining w can be treated as an expectation maximization
problem where the original data is projected using the current
estimate of w (y = Xwt) and this projection is used to re-estimate
w using the following minimization step:

wt+1 = arg minw

N∑
n =1

||xn − ynw||22

Where xn are the rows of the original data and yn are the rows of
the projected data (Sigg and Buhmann, 2008). This expectation-
maximization formulation allows additional constraints on w,
including forcing the component values to be non-negative. Note
that the non-negativity constraint applies only to the weight
components such that negative scores can still exist if there
are negative values in underlying data, such as those produced
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by centering expression data to zero which we did for all
gsPCA inputs. Subsequent components are calculated in the
same way, under the constraint that they are orthogonal to
the preceding ones.

NMF involves factorizing the original data matrix of non-
negative values into two matrices whose product estimates the
original data, i.e.:

X ∼=WH

Where X is the original matrix (m by n), W is the basis or features
matrix (m by p), and H is the coefficient matrix (p by n), such that
m is the number of rows in the original matrix (samples in our
case), n is the columns (genes in our case), and p is the number of
components used in the factorization. In addition to factorizing
X, NMF naturally clusters the elements of the original data: W
represents the “centers” of column clusters whose memberships is
determined by the relative coefficient values in H, and vice versa
with H representing the centers of row clusters determined by W
(Brunet et al., 2004). Because the original matrix is constrained
to being non-negative, we subtracted the minimum of value of
the scaled expression matrix from all values to create a non-
negative input matrix. As a consequence, the values of the W
and H matrices must likewise be non-negative such that product
is non-negative.

Implementation of Dimension Reduction
Approaches
We implemented non-negative PCA in R using the nsprcomp
function (with the option nneg = TRUE) from the package
of the same name (Sigg and Buhmann, 2008). We used the
standard convergence parameters for the algorithm as these
produced consistent principal components across multiple runs
and different number of components. This is to be expected as
nsprcomp greedily maximizes the variation explained by each
component in order. For gsNMF, we used the Scikit-learn
implementation of NMF (Pedregosa et al., 2011). To optimize
convergence criteria, we performed a cross-validation analysis
of A549 data and found that a two-component model fit with
a tolerance of 1e–6 and a max of 500 iterations gave the
best results (see Supplemental Methods and Supplementary
Figure 6). We also tested ten random seeds of the two component
A549 model on the full data to confirm that consistent results
were given (average PCC of dimensions > 0.99). We tested ten
random seeds against the other data sets to tune the convergence
parameters, raising maximum iterations to 2,500 and tolerance
to 1e–9 if the initial parameters did not yield consistent results
(i.e., average PCC of dimensions > 0.99). GSVA and Z-score
methods were implemented using the GSVA package in R
(Hänzelmann et al., 2013).

Unlike GSVA and Z-scores methods, which produce a single
score per gene set, gsPCA and gsNMF both produce multiple
sample level scores in the form of principal component scores
(wX, gsPCA) or the columns of the features matrix (W, gsNMF),
while the corresponding loading values/weights (w, gsPCA) or
coefficient matrix (H, gsNMF) represent gene level scores (i.e.,
gene importance). Therefore, we need to choose one of these
sample level scores as a “leading dimension” to represent each

gene set in functional space. For gsPCA, we used the first
principal component as this represents the direction of greatest
variance for gene expression in that gene set. For gsNMF, we
used the magnitude of correlation between the columns of the
transform matrix and the sample metric that best represented
progression in EMT (i.e., time for A549 and DU145 data). For E
and M genes, we also required the sign of correlation to match the
expected change in E and M genes during EMT (i.e., picking the
greatest negative PCC for E and the greatest positive PCC for M).
For our spatial EMT data, where there were only two populations,
f probability was used instead (see below), but with the same
constraint on the direction of E and M dimensions (i.e., higher M
scores for outer samples and higher E scores for inner samples).

Evaluating Functional Spaces
To evaluate a functional space, we used two metrics. First, if
the sample data had an associated time variable, we created
a model of time as a linear function of the two axes of the
functional space (time ∼X + Y) and calculated the coefficient
of determination, which is the percent of overall variance in
the dependent variable explained by the independent variables
(Adjusted R2). Second, to evaluate the ability of functional space
to separate distinct populations, such as neighboring time points
or spatial locations, we used the common language effect size (f ),
which is the probability that a value or score randomly sampled
from one population will be larger than a random score from
the other. This metric is advantageous because we can calculate
it from the test statistic of Mann–Whitney U-test, which also
provide a measure of significance, and is related to the area under
of the receiver operating curve (AUC-ROC), which is commonly
used to asses classification algorithms. Additionally, since the f
probability is reciprocal, the choice which population we want
to be larger is arbitrary, so for EMT we can chose to calculate
the f probability such that the larger population is the more
progressed for M and less progressed for E. Therefore, a higher
probability of f always indicates better correspondence with EMT
progression in our results.

Inference and Model Transfer
To infer the position of new data in functional space for gsPCA,
we multiplied the new data directly by loading vectors (also
known as weights, w) of the E- and M-scores. For gsNMF,
we used the Scikit-learn “transform” method which transforms
the input data according to the fitted model (i.e., it fixes the
coefficient matrix, H, and generates a new feature matrix, W).
In both cases, we used the same leading dimension for inference
as in the original model. For inferring missing data points, no
further steps were required as the new data always had the same
coverage of the E and M gene sets as the original. However, for
transferring models across cell-line, TCGA, and spatial data, we
first had to determine the common set of genes between the two
data sets. Common genes were then used to filter the weight
vectors for gsPCA and to refit the model on the original data
using the common subset of genes for gsNMF. The data set that
was the target of the transferred model was then subset by the
same common set of genes and inference was done as described
previously. Transferred models were assessed against the new
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data set using the same approaches as the original models, but
relationship between E/M-scores and gene loading/coefficient
values between models were assessed by PCC.

Multi-Gene Set Evaluation
C2 gene sets were obtained from the Molecular Signature
Database (version 7.1)1 (Subramanian et al., 2005; Liberzon
et al., 2011, 2015). gsNMF was performed as described
for EMT gene sets expect that we increased the iteration
(2,500) and convergence threshold (1e–9) of the NMF
algorithm to ensure consistent results across the gene sets
which varied widely in size (2–1,581 genes present in the
data set) and coverage by the A549 data set due to the
sparsity of scRNA-seq data. To test the robustness of this
approach, we looked at the correlation of PCC scores
along the leading axis for each gene set across 10 random
seeds and found they were highly similar (average PCC
between seeds = 0.998).

We used the same iteration and convergence threshold
for analysis of the C6 (Molecular Signature Database)
and the GEAR drug resistance gene sets (Wang et al.,
2017) which were used to project the trametinib data.
Gene sets, KEGG pathways and GO terms associated
with the GEAR drug genes were obtained using
KEGGREST package in R for KEGG pathways and
http://geneontology.org/ for GO terms (Ashburner et al.,
2000; The Gene Ontology Consortium, 2017).
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Supplementary Figure 1 | Predicting A549 samples from specific time points
using gsPCA. (A) Scatter plot of E (X-axis) and M (Y-axis) scores for all TGF-β
induction samples using gsPCA. Samples from different time points are indicated
by color going from 0 days (dark green) to 7 days (dark purple). (B–D) Scatter plot
of 0-day (green, B), 1-day (yellow, C), and 7-day samples (purple, D) inferred using
a gsPCA model built using all other time points (gray). (E) A scatter plot of TGF-β
induction samples with TGF-β reversion samples (i.e., 7 days induction followed
by removal from TGF-β). Induction samples are labeled as in panel (A), while
reversion samples are colored blue, with darker shade indicating longer time since
removal. (F) Scatter plot of 3-day reversion samples (dark blue) inferred using a
gsPCA model built using all non-reversion time points (gray).

Supplementary Figure 2 | Transferring gsPCA models between A549 and
DU145 TGF-β induced samples. (A–D) Scatter plot of E (X-axis) and M (Y-axis)
scores for different combinations of data and gsPCA model: (A) A549 model on
A549 data, (B) DU145 model on A549 data, (C) A549 model on DU145 data, and
(D) DU145 model on DU145 data. Samples from different time points are
indicated by color going from 0 days (dark green) to 7 days (dark purple). (E,F)
Comparison of E-scores of samples from A549 (E) and DU145 (F) data. The
X-axis is the E-score from using the model from the same data set (A549 on A549
and DU145 by DU145), while the Y-axis is the E-score from the opposite model
(DU145 on A549 and A549 on DU145). Samples from different time points are
indicated by color going from 0 days (dark green) to 7 days (dark purple). (G,H)
Comparison of M-scores of samples from A549 (G) and DU145 (H) data. The
X-axis is the M-score from using the model from the same data set (A549 on A549
and DU145 by DU145), while the Y-axis is the M-score from the opposite model
(DU145 on A549 and A549 on DU145). Samples from different time points are
indicated by color going from 0 days (dark green) to 7 days (dark purple).

Supplementary Figure 3 | Transferring gsPCA models to TCGA data. (A,B)
Scatter plots of E-scores for PRAD (A) and LUAD (B) from transferring gsPCA
models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual
points indicates the original GSVA based E-score of the TCGA data set. (C,D)
Scatter plots of M-scores for PRAD (C) and LUAD (D) from transferring gsPCA
models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual
points indicates the original GSVA based M-score of the TCGA data set.

Supplementary Figure 4 | Transferring gsPCA models between temporal and
spatial data sets. (A–C) Scatter plots of E (X-axis) and M (Y-axis) scores for Mock
spatial data from gsPCA models built on different data sets: Mock spatial data (A),
TGF-β induced spatial data (B), and TGF-β induced A549 temporal data (C). The
color of the sample indicates whether it originates from a cell in the inner-ring
(non-motile, red) or the outer ring (motile, blue). (D–F) Scatter plots of E (X-axis)
and M (Y-axis) scores for TGF-β spatial data from gsPCA models built on different
data sets: TGF-β induced spatial data (D), Mock spatial data (E), and TGF-β
induced A549 temporal data (F). The color of the sample indicates whether it
originates from a cell in the inner-ring (non-motile, red) or the outer
ring (motile, blue).

Supplementary Figure 5 | Normalized expression of KRT8 and KRT18 across
A549 and migration data sets. Boxplots showing the normalized expression of
KRT8 (top) and KRT18 (bottom) across A549 data (left) and migration data
(right). The central black line indicates the average of each distribution while the
whiskers show 1.5 times the interquartile range. For A549 data, color of the
boxplot indicates the time from 0 day (dark green) to 7 days (dark purple) for
TGF-β treatment, followed by removal of TGF-β for 8 h, 1 days, and 3 days
(darkening shades of blue). For migration data, color differentiates samples in the
inner (red) vs. outer (blue) rings of the assay.

Supplementary Figure 6 | Performance of gsPCA models across
cross-validation data sets. Boxplots showing Adjusted R2 of the linear model of
gsNMF leading E and M dimensions across different number of model
components (X-axis) and different convergence criteria: basic (algorithm standard,
A), strong (1e–6 tolerance, 500 iterations, B), very strong (1e–9 tolerance, 2,500
iterations, C), and nndsvd (initialization with non-negative singular value
decomposition, 1e–6 tolerance, 500 iterations, D). Left and right panels separate
the result for all validation folds and the mean performance of independent folds
within each training data set (see Supplemental Methods). The yellow line
indicates the average of each distribution while the whiskers show 1.5 times the
interquartile range. Red dots show the individual Adjusted R2 values in
each distribution.
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