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a b s t r a c t

The shoot apical meristem (SAM) is the primary stem cell niche in plant shoots. Stem cells in the SAM are
controlled by an intricate regulatory network, including negative feedback between WUSCHEL (WUS)
and CLAVATA3 (CLV3). Recently, we identified a group of signals, Epidermal Patterning Factor-Like
(EPFL) proteins, that are produced at the peripheral region and are important for SAM homeostasis.
Here, we present a mathematical model for the SAM regulatory network. The model revealed that the
SAM uses EPFL and signals such as HAIRY MERISTEM from the middle in a synergistic manner to con-
strain both WUS and CLV3. We found that interconnected negative and positive feedbacks between
WUS and CLV3 ensure stable WUS expression in the SAM when facing perturbations, and the positive
feedback loop also maintains distinct cell populations containing WUSon and CLV3on cells in the apical-
basal direction. Furthermore, systematic perturbations of the parameters revealed a tradeoff between
optimizations of multiple patterning features. Our results provide a holistic view of the regulation of
SAM patterning in multiple dimensions. They give insights into how Arabidopsis integrates signals from
lateral and apical-basal axes to control the SAM patterning, and they shed light into design principles that
may be widely useful for understanding regulatory networks of stem cell niche.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Spatiotemporal regulation of cell populations in stem cell
niches is critical for plants and animals during developmental
and homeostatic conditions [1–5]. The shoot apical meristem
(SAM) of Arabidopsis thaliana is one of the most extensively studied
model systems for understanding stem cell niches in plants. The
dome-shaped SAM harbors stem cells that are located in the epi-
dermal and subepidermal layers. Under normal conditions these
cells are characterized by the high expression of CLAVATA3
(CLV3), which encodes a secreted peptide that can diffuse to neigh-
boring cells and regulate their gene expression [6]. The patterning
and size of the SAM remain stable in mature plants, suggesting
tight regulation of stem cell populations. Previous studies have
revealed crucial mechanisms for regulating these cells in the
apical-basal axis of the SAM. Particularly, the number of stem cells
is maintained by WUSCHEL (WUS), which is expressed in cells of
the organizing center below the subepidermal layers of the SAM
[7,8]. WUS protein moves to the upper layers and activates CLV3
expression, whereas the diffusible CLV3 peptide suppresses the
expression of WUS [9–11]. This negative feedback loop is consid-
ered the core circuit controlling the size of the SAM and the num-
ber of stem cells in this region [9,10,12]. More recent discoveries
show that the separation of WUS and CLV3 expressing regions is
driven by additional signals originating from the basal zones of
the SAM, such as high concentrations of WUS and/or HAIRY MER-
ISTEM (HAM) [13–15], and these signals prevent CLV3 expression
below the subepidermal layer. Mathematical models have been
used in numerous studies to describe the dynamics of gene activ-
ities in the SAM quantitatively, and have improved our under-
standing of the complex molecular and cellular networks
controlling SAM patterning [11,13,16–25]. These models have
revealed the key role of negative feedback in maintaining home-
ostasis, as well as the mechanisms underlying the separation
between CLV3 and WUS expressing domains. While these experi-
mental and computational studies provided ample information
about regulatory networks along the apical-basal axis, regulatory
mechanisms in the lateral direction of the SAM remain unclear.
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For example, it was proposed that some ‘pocket-like’ signals
restrict CLV3 expression in both the apical-basal and lateral direc-
tions [22], but currently there is no experimental evidence show-
ing the existence of any inhibitory factor with such an expression
pattern. Although WUS has been shown to play a role in restricting
the CLV3 expression laterally [13,15,26,27], theoretical reconstruc-
tion of correct SAM patterning still requires some additional hypo-
thetical ‘positional cues’ that constrain CLV3 expression [27].
Therefore, our understanding of mechanisms underlying lateral
boundary of the CLV3 and/or WUS expressing domains in the
SAM is incomplete.

Recently, we have identified a group of potent signals, Epider-
mal Patterning Factor-Like (EPFL) proteins, that originate from
the peripheral zone of SAM and inhibit CLV3 and WUS expression
[28,29]. EPFL signals are communicated by four diffusive ligands:
EPFL1, EPFL2, EPFL4, and EPFL6 [28]. The loss of these ligands
caused the upregulation of both WUS and CLV3 and increased the
size of the SAM, suggesting that these signals play an essential role
in maintaining the stem cell population in the SAM, and their per-
turbation can override the negative feedback loop [29]. However, it
is unclear how the SAM integrates information from the apical-
basal direction with that from the lateral direction, and how mul-
tiple signals synergistically control SAM patterning.

To obtain insights into these questions, we built a mathematical
model describing the intracellular and intercellular regulatory net-
works in the meristem. We perturbed the model to examine the
key regulatory elements (e.g. EPFL and HAM) controlling the gene
expression patterns in the middle and peripheral regions of the
SAM, and to unravel the roles of interconnected negative and pos-
itive feedbacks betweenWUS and CLV3 in SAM patterning. We fur-
ther used three new metrics of patterning to explore functional
objectives that may constraint the kinetic rate constants underly-
ing regulations of key genes: 1) downregulation of WUS expression
in the lateral region of the SAM; 2) stability of total WUS concen-
tration in the SAM in the presence of perturbations; and 3) diverse
cell populations that highly express eitherWUS or CLV3 in the mid-
dle of the SAM. These analyses provide a holistic view of the prin-
ciples governing the SAM patterning.
2. Results

2.1. A mathematical model recapitulates known phenotypes of SAM
patterning under normal and perturbed conditions

Previous mathematical models of SAM patterning have been
focused on the negative feedback between WUS and CLV3, as well
as other factors controlling their expressions along the apical-basal
axis [11,13,16–20,22–25]. Here, we built a two-dimensional model
incorporating elements of these previous models with the potent
lateral regulator EPFL that was recently characterized (Fig. 1A)
[28,29]. We considered 51 cells (a minimum number of cells that
reflects multilayer patterning of the SAM in terms of key factors
[13]) organized in a dome-shaped structure. This structure con-
tains six layers of cells (L1-L6) for which gene expression pattern-
ing is critical for development [13,14]. In each cell, concentrations
of six interacting molecules were described with ordinary differen-
tial equations (ODEs) based on the gene regulatory network shown
in Fig. 1A (see Methods for details). Key assumptions about the
regions producing the regulatory molecules are illustrated in
Fig. 1B (See Methods and Table 1 for details). Our assumptions also
include diffusion/movement of EPFL, WUS and CLV3 in all direc-
tions. We sought to obtain a comprehensive view of gene regula-
tion in SAM patterning by simulating and analyzing this model
under various conditions.
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We first fit our model to SAM patterning under normal condi-
tions (wild type, WT) as well as several phenotypes in terms of dis-
tributions of key molecules due to genetic perturbations of several
regulators. We identified a representative parameter set that
allows the model to reproduce experimentally observed pheno-
types (Fig. 1C–I, Table 2).

In the simulated wild type, WUS and CLV3 were expressed in
confined regions near the central axis of the SAM, while their pro-
teins diffused (CLV3) or moved (WUS) broadly to other regions
(Fig. 1C). Along the apical-basal axis, a moderate amount of WUS
moved to L1 layer, where it maintained the expression of CLV3.
Similarly, a moderate amount of CLV3 diffused to the meristem
rib (Fig. 1C). Notably, both WUS and CLV3 expressing regions are
limited by lateral boundaries, whereas their expressions in the
apical-basal direction are anticorrelated with each other, with
the L1 layer expressing CLV3 but not WUS, and bottom layers only
expressing WUS (Fig. 1C). EPFL was distributed differentially
within and across layers, due to the assumption of its isotropic dif-
fusion, and this established a lateral-middle spatial gradient
(Fig. 1C). In the wus mutant, no CLV3 expression was observed as
we expected from the gene regulatory network (Fig. 1A and D)
[30,31]. The lateral confinement of both WUS and CLV3 was lost
upon the removal of signaling triggers by EPFL (Fig. 1E): WUS
expression had a moderate lateral expansion, whereas CLV3 had
a dramatic expansion in the epidermal (L1) layer and the L2 layer
(note that the erf mutant in this study refers to the absence of mul-
tiple ERf receptors, which requires knocking out three genes exper-
imentally). These observations are consistent with recent
experimental findings [30,32]. Interestingly, the model showed
that the anticorrelation pattern of WUS and CLV3 expressions
was largely maintained in this mutant despite their own expan-
sions (Fig. 1E). The model reproduced the well-known phenotype
of the CLV3 knockout (KO): the WUS expressing region expanded
both apically and laterally upon the loss of CLV3 (Fig. 1F). More-
over, the expression in the meristem rib was increased from the
level in the wildtype (Fig. 1C and F), indicating the inhibitory effect
of CLV3 diffused to this region. The model showed that in the
absence of both EPFL and CLV3 signals, WUS had a dramatic
increase in expression across the SAM (Fig. 1G). The model also
showed that the anticorrelated WUS-CLV3 expression pattern was
lost in the absence of HAM (Fig. 1H), and this co-expression of
WUS and CLV3 in the organizing center with HAM KOwas observed
previously [13,33]. Interestingly, there was a moderate decrease of
CLV3 expression in the central zone with the loss of HAM compared
to the wild type (Fig. 1H), even though the central zone CLV3
expression was not regulated by HAM directly in our model (see
Methods). The decrease of CLV3 expression in the central zone
was because of the negative feedback between WUS and CLV3:
the moderately decreased WUS expression upon the expansion of
CLV3 expression to the meristem rib reduced the availability of
WUS protein in the central zone. This reduction in turn decreased
the CLV3 expression in the central zone, but not in the meristem rib
due to the dominant effect of the loss of HAM. The alteration of the
CLV3 expression pattern in the ham mutant is consistent with a
recent report (Zhou et al., 2018). Nonetheless, a significant level
of WUS expression was maintained in the meristem rib (Schulze
et al., 2010), and this level of WUS in the SAM was critical for
the overall gene patterns in the region, as manifested in the pheno-
type upon the complete loss of WUS (Fig. 1D). In addition to these
genetic perturbations, our model recapitulated the observed stabil-
ity of the WUS expression when the CLV3 expression was increased
by 10-fold [34] (Fig. S1A). We summarized the key SAM expression
patterns that are captured by the model and their supporting
experimental evidence in Table 2. In conclusion, our model cap-
tures the effects of perturbations of key genes that regulate SAM
patterning in both apical-basal and lateral directions.



Fig. 1. A mathematical model of SAM captures roles of key regulators of SAM patterning. A. Influence diagram for key molecules regulating SAM patterning. ARR and
cytokinin were implicitly modeled (WUS activates itself in the model). A single variable was used to describe the combined signaling of WUS and HAM. Arrows indicate
experimentally supported regulations (Table 1). B. Key assumptions about spatial distribution of SAM regulators. Black regions highlight cells that were assumed to have the
capacity to produce the denoted molecules. Maximum signaling/distribution/production refers to the distributions of denoted production or signaling in the absence of
inhibitors and in the presence of activators. EPFL, CLV3 and WUS proteins were allowed to move between neighboring cells. C-J. Steady state distributions of SAM regulators
under various conditions. All mutants were simulated by removing the production of the denoted molecules. All simulations were performed under initial conditions with
low amount (=0) of all molecules across SAM.
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The model makes an immediate prediction that the loss of HAM
and EPFL will cause dramatic expansion of the CLV3-expressing
region, as well as expansion of the WUS-expressing region in both
the lateral and apical-basal axes (Fig. 1I). In the following sections,
we describe specific insights and other predictions that we
obtained from the model.

2.2. Differential roles of EPFLs and CLV3 in regulating SAM patterning

It has been previously shown that WUS expression in the mid-
dle SAM is essential for maintaining stem cell populations
[7,8,26]. In contrast, WUS expression in the lateral region of the
SAM is associated with abnormal development [10,30]. These
observations suggest that the two regions may require different
modes of regulation. To gain deeper understanding of the roles of
EPFL and CLV3 in limiting the WUS expression region, we focused
on two SAM areas described in the model (Fig. 2A). Region 1
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(Fig. 2A, blue) includes cells near the middle apical-basal axis of
the SAM, whereas Region 2 (Fig. 2A, Indian red) includes cells in
the peripheral zone. In terms of our simulation results (Fig. 1C),
Region 1 was defined as cells that express either WUS or CLV3
under the wild-type condition, whereas Region 2 was defined as
cells that neither express WUS nor CLV3 under the same condition.

We quantified the amount of WUS mRNA (in an arbitrary unit,
or a.u.) in these two areas based on our simulations. We found that
upon the loss of EPFLs there was a moderate increase of total WUS
expression near the middle apical-basal axis, but the increase was
more prominent in the clv3 mutant (Fig. 2B, blue). This increase in
the clv3 mutant is comparable to that observed in the erf-clv3
mutant, suggesting that the apical-basal boundary of the WUS-
expressing zone is primarily controlled by CLV3. In contrast to
the dominant role of CLV3 in Region 1, EPFL and CLV3 both control
WUS expression in Region 2: the loss of either factor (single-
mutants) resulted in a significant increase of WUS expression,



Table 1
Key assumptions of the model.

Assumption Reference for
experimental evidence

Ligands EPFL are produced in the lateral region of
the SAM, but are diffused broadly in the SAM

[28]

EPFL inhibits CLV3 and WUS expression [29]
CLV3 inhibits WUS expression, and WUS activates

CLV3 expression
[9–11]

WUS activates its own expression (for example: an
ARR-Cytokinin-WUS loop)

[23,39,58,59]

HAM inhibits CLV3 expression [13]
HAM and WUS synergize to exert transcriptional

regulation
[13,49]

HAM is expressed in the lower middle region of the
SAM

[13]

WUS may be expressed broadly in the SAM, except
for L1 layer

[9,10]

CLV3 may be expressed broadly in the SAM [13,56,63]
WUS and CLV3 move/diffuse to neighboring cells in

the SAM
[11,55,56]

* The phrase ‘may be expressed’ is used when the model allows the expression, but
it is inhibited by relevant inhibitors when they are present.

Table 2
Known SAM gene expression patterns captured by the model.

Genetic
background

Description of patterning Reference for
experimental
evidence

Wild type CLV3 is expressed in the top middle
region of the SAM

[6,10,31,56,57]

Wild type WUS is expressed in the lower
middle region of the SAM

[6,8–10,57]

wus mutant No CLV3 expression [30,31]
clv3 mutant Increased WUS expression in the

SAM as compared to wild type,
including lateral region

[9,63]

erf mutant Increased WUS expression in the
SAM as compared to wild type,
including lateral region

[32]

erf mutant Increased and broader CLV3
expression as compared to wild type

[30,32]

clv3-erf mutant Highly increased WUS expression as
compared to wild type

[29,30]

ham mutant CLV3 expression is centered at in the
lower middle region of the SAM

[13,33]

Induction of CLV3
expression by
10-fold

Stable WUS expression pattern in the
SAM

[34]
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and the loss of both factors produced an even more dramatic
increase (Fig. 2B, Indian red). Interestingly, the sum of the effects
Fig. 2. EPFL and CLV3 control patterns ofWUS expression at different regions. A. An illust
contains cells near the apical-basal axis of the SAM, whereas Region 2 (Indian red) contai
Total WUS mRNA in the two regions indicated in A. Simulations were performed with th
the production of the indicated mRNAs. The hatched bars were calculated by adding the
the amount of wild-type mRNA. (For interpretation of the references to color in this fig
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on WUS expression from the two single-mutants was less than
the effect of the erf-clv3 mutant (Fig. 2B, hatched vs. solid), sug-
gesting a nonlinear cooperativity between EPFL and CLV3 signals.
We found that this cooperativity was maintained when we per-
turbed the parameter values in the model (Fig. S2). Together with
the observation that the loss of EPFL resulted in an increased CLV3
signal (Fig. 1E), our model further suggests that part of the lost
inhibition of WUS expression in the erf mutant is compensated
for by an increased level of CLV3. Together, these results show that
EPFL and CLV3 signals synergistically control the lateral boundary
of the WUS-expressing zone, whereas the apical-basal boundary of
the WUS-expressing zone is primarily controlled by the CLV3
signal.

In addition to the synergy between EPFL and CLV3 in the regu-
lation of WUS, we found that the spatial distributions of the cells
producing EPFL and HAM (Fig. S1B and C) were critical for main-
taining the expression patterns of both WUS and CLV3: the expan-
sion of HAM production to upper layers resulted in the reduction of
CLV3 expression and the lateral expression of WUS expression; the
expansion of EPFL to the middle SAM reduced the overall CLV3
expression, and it dampened the WUS expression in the middle
SAM while causing the lateral expansion of the WUS expression
(Fig. S1B and C). These results suggest the synergy between EPFL
and HAM, and the importance of their spatial distributions.
2.3. Inhibition of WUS and CLV3 expression by EPFL is important for
maintaining SAM patterning

It was recently observed that EPFL inhibits the expression of
both WUS and CLV3 [29]. It was, however, unclear how each of
these inhibitions contributes to SAM patterning. We therefore
removed these two inhibitory relationships from our model one
at a time and examined the steady state patterning of the SAM
(Fig. 3). We found that upon the loss of CLV3 inhibition by EPFL,
there was a 30% increase of both CLV3 mRNA and CLV3 protein
in the SAM. Interestingly, CLV3 was expressed around the organiz-
ing center in both the apical and lateral directions (Fig. 3A and C).
This lateral expansion of CLV3 expression suggests that the inhibi-
tion of CLV3 by EPFL is critical for restricting CLV3 expression in the
top layers of the middle SAM. In addition, WUS expression moder-
ately decreased compared to the wild type (Fig. 1C) due to the
expanded CLV3 expression. When we removed the inhibition of
WUS by EPFL, the WUS expression region had a significant lateral
expansion, and its expression in the middle region also increased
compared to the wild type (Fig. 3B and C, dotted line). These anal-
yses demonstrated the paradoxical roles of EPFL on WUS expres-
sion: it directly downregulates WUS in both the lateral and
ration of two regions that were analyzed forWUS mRNA production. Region 1 (blue)
ns cells at the lateral boundary between the middle zone and the peripheral zone. B.
e model structure described in Fig. 1. Mutant genotypes were modeled by removing
amounts of mRNA in the erf mutant and clv3 mutant increased from wild type, and
ure legend, the reader is referred to the web version of this article.)



Fig. 3. The effects of WUS and CLV3 inhibition by EPFL. A. A simulation with the removal of CLV3 inhibition by EPFL. B. A simulation with the removal of WUS inhibition by
EPFL. In both A and B, the indicated transcriptional inhibition was removed from the model by increasing the threshold to a large number (1000). Simulations were performed
with the procedure as those described in Fig. 1. Steady state SAM patterns were analyzed. Wild type and erf mutant patterning are shown for comparison. C. Left: WUS and
CLV3 mRNA in the middle region (Fig. 2, blue). Right: WUS and CLV3 mRNA in the lateral region (Fig. 2, Indian red). Dotted lines are visual guides for wild-type WUS mRNA.
Gray lines are visual guides for erf mutant WUS mRNA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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middle regions of the SAM while it indirectly upregulates the same
gene by inhibiting CLV3. The direct downregulation has the domi-
nant effect, because blocking this regulation produced a WUS pat-
tern similar to that of the erfmutant (Fig. 3, gray line). Nonetheless,
the slightly higher WUS expression in the blocked EPFL-to-WUS
condition than in the erf mutant provides further evidence for
the paradoxical roles of EPFL (Fig. 3, gray line). Together, these
results show that EPFL inhibition of both WUS and CLV3 is critical
for SAM patterning.

We found that the alterations of the gene expression upon per-
turbations were not always intuitive. For example, blocking the
EPFL-to-CLV3 inhibition resulted in a reduction of CLV3 mRNA in
the middle of the SAM (Fig. 3C), suggesting the importance of the
negative feedback loop between CLV3 and WUS. In the next sec-
tion, we describe our analyses of the interconnected feedback
loops in the SAM.

2.4. Paradoxical feedbacks between WUS and CLV3 maintain robust
patterning in apical-basal axis of SAM

We noticed that the SAM regulatory network contains two feed-
back loops betweenWUS and CLV3 (Fig. 1A and Fig. 4A). In the first
network motif, WUS activates CLV3 expression and CLV3 inhibits
WUS expression, forming a negative feedback loop. The second
motif consists of WUS inhibition by CLV3, and CLV3 inhibition by
HAM and high concentration of WUS [13–15]. This motif is a
double-negative (positive) feedback loop (Fig. 4A, top panel). These
two feedback loops are both interconnected (i.e. they share a reg-
ulation) and paradoxical (i.e. they are negative and positive respec-
tively). While the first loop is a well-known negative feedback that
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has been proposed to be critical for maintaining the homeostasis of
the SAM, the function of the interconnected and paradoxical feed-
backs between WUS and CLV3 is unclear. To examine the roles of
these two feedbacks on SAM patterning, we constructed two alter-
native models with disrupted negative and positive feedbacks
respectively (NFL-KO, PFL-KO models. Fig. 4A). For NFL-KO model,
we introduced a hypothetical activation signal for CLV3 in the L1
and L2 layers of the central zone. This signal avoids the trivial out-
come of the complete absence of CLV3 in the SAM, and the addition
of the signal gave rise to a SAM pattern similar to the wild type
(Fig. 4B). For the PFL-KO model, we removed the downregulation
of CLV3 by the WUS signal. In order to compare these alternative
models to the basal (wild-type) model in terms of WUS expression
patterning, we further adjusted the synthesis rate constants of
CLV3 mRNA in the alternative models such that the overall WUS
expression patterns obtained with the three models are compara-
ble (Fig. 4B).

We next perturbed the expression ofWUS by reducing its mRNA
synthesis rate constant. This perturbation reflects possible aber-
rant environmental or genetic changes. Because the regulation of
WUS itself was not altered in the PFL-KO or NFL-KO models, this
perturbation was not biased towards any model in a trivial way.
However, the wild type model was robust with respect to the per-
turbation in terms of total WUS production in the SAM (Fig. 4C): a
50% decrease of the rate constant resulted in less than 10% loss of
theWUS in the wild type SAM (Fig. 4C, orange). In contrast, the loss
of either negative or positive feedback decreased the stability of
WUS production when challenged with the same perturbations.
In particular, the NFL-KO model had a more prominent decrease
of WUS production (>3-fold from unperturbed condition) than



Fig. 4. Roles of paradoxical feedbacks between WUS and CLV3. A. Top: two motifs showing the negative and the positive feedback between WUS and CLV3. Middle: network
structure of negative feedback knockout model (NFL-KO) which does not have a WUS-CLV3 negative feedback loop. Dashed line indicates a hypothetical activation signal for
maintaining CLV3. Bottom: network structure of positive feedback knockout model (PFL-KO) which does not have the WUS-CLV3 positive feedback loop. B. Steady state
distributions ofWUS and CLV3mRNA in SAMwith circuits of wild-type, NFL-KO and PFL-KO models. C. Steady state distributions ofWUS and CLV3mRNA in SAMwith circuits
of wild-type, NFL-KO and PFL-KO models with 50% reduction of WUS mRNA production rate constant. D. Total WUS mRNA in SAM with respect to reduction of WUS mRNA
production rate constant. E. Distributions of 17 middle SAM cells in the phase space of WUS and CLV3 mRNA with three models under normal condition. Each dot indicates a
cell and in the middle region of the SAM (Fig. 2A Indian red), and its coordinates show the levels of WUS mRNA and CLV3 mRNA, respectively. Contour maps show the density
of these cells in theWUS and CLV3mRNA space. Numbers in quadrants indicate cell numbers. The cell numbers in the top left and lower right quadrants reflect the diversity of
the WUSon and CLV3on cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the PFL-KO model did (Fig. 4C, purple), suggesting that the nega-
tive feedback has a dominant role in protecting the stability of
WUS production in the SAM. In earlier analysis, we showed that
blocking the inhibition of CLV3 by EPFL gave rise to a WUS expres-
sion pattern comparable to the wild type (Fig. 3A), a feature found
in the NFL-KO and PFL-KO models. We observed that the inhibition
of CLV3 by EPFL also facilitates the maintenance of WUS expression
stability, but its effect is less than that of the feedback loops
(Fig. 4C, yellow). We found that when the WUS mRNA production
rate constant was reduced in the wild type, the level of CLV3
expression was significantly decreased (Fig. 4D), which in turn
compensated for the loss of WUS mRNA production, thereby main-
taining the stability of WUS expression in the SAM via a negative
feedback. This compensation effect via downregulation of CLV3
was not observed with the NFL-KO model, and was only moderate
in the PFL-KO model as compared to the wild type model (Fig. 4D).
We further perturbed the system with increasing WUS production
rate constant, and we used additional metrics to examine the
3882
response in terms of the SAM patterning. We found that the
wild-type model consistently performed equally well as or better
than the alternative models (Fig. S3).

Positive feedback (or double-negative feedback) is widely used
in developmental systems for maintaining tissue boundaries
[35,36]. In the wild type SAM, cells along the middle apical-basal
axis are either WUSoffCLV3on or WUSonCLV3off except for L2 cells
which had significant expression of both WUS and CLV3 (Fig. 4B
and E). The robustness of the anticorrelated expression pattern of
WUS and CLV3 in most cells of the SAM was also reflected in
mutant simulations when EPFL-driven inhibition was partially or
completely lost (Fig. 1E, 3, and 4B). However, in the absence of
the positive feedback loop (Fig. 4A, PFL-KO model), the number
of cells co-expressing WUS and CLV3 increased significantly, and
the anticorrelation pattern of WUS and CLV3 expressions was lost
(Fig. 4B and E).

Together, these results show that the paradoxical feedbacks
between WUS and CLV3 are critical both for stabilizing WUS
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expression and for generating the separation between WUS-
expressing and CLV3-expressing regions. Stable WUS expression
may be important for maintaining the size of the SAM, while sep-
aration between WUS-expressing and CLV3-expressing cells may
be important for maintaining diverse cellular properties, such as
proliferation rate, in different regions of the SAM [23]. The special-
ization of cellular phenotypes along the apical basal axis may in
turn support the robust structure of the SAM.

2.5. Tradeoff in maintaining SAM patterning

Due to the lack of quantitative measurement in terms of the
SAM patterning, we did not attempt to obtain a single parameter
set that gives the best fit to experimental data in this study. How-
ever, the emergence of the simulated SAM patterns that are quali-
tatively consistent with many experimental observations allows us
to interrogate the influence of the parameter values on the SAM
patterning in a collective manner. In the previous sections we dis-
cussed three key features of the SAM regulatory network: 1) the
network uses two signals to fully repress WUS expression in the
lateral region of the SAM; 2) the network maintains the stability
of WUS production in the SAM using two feedback loops; and 3)
the network generates a distinct populations containing WUSon

cells and CLV3on cells in the middle region of the SAM. If these three
features are critical for plant physiology, how would the kinetic
rate constants of the system be optimized to achieve them? To gain
insight into this question, we used three metrics describing three
performance objectives: lowering WUS expression in the lateral
region, lowering the variability of WUS production in the presence
of perturbations, and increasing the number of WUSon cells and
CLV3on cells in the middle region (Fig. 5A). For easier interpretation,
all three metrics were designed such that lower scores mean ‘bet-
ter’ performance and higher scores mean ‘poorer’ performance (see
Methods, Fig. 5B top). We perturbed 23 model parameters by
decreasing each of them 2-fold, and then increasing each 2-fold,
scored the performance of the perturbed models using the three
performance metrics, and then normalized them to the scores
obtained from wild type model (Fig. 5B) by subtracting the wild-
type scores from the scores of the perturbed models (see Methods).
Among the three metrics, the scores of the diversity metric (Metric
III) were most robust with respect to the perturbations among the
three metrics, possibility because it is based on a discrete measure-
ment in terms of cell numbers rather than a continuous one.
Changes in each parameter had some influence on at least one per-
formance score, and changes in 13 out of the 23 parameters had
one performance score better than the basal one. However, none
of the changes of individual parameters gave rise to better perfor-
mance in two or three metrics (Fig. 5, heatmap, Fig. S4).

This analysis suggests a possible tradeoff in optimizing the
kinetics of the SAM network: achieving better performance in
one metric is likely accompanied with jeopardized performance
in at least one other metric. However, this phenomenon might be
simply due to the fact the very few perturbations of individual
parameters had improved performance in any metric, so the
absence of better performance in two or three metrics may just
occur by chance. To further examine the relationship among these
three performance objectives, we generated 104 perturbed models
with all of their parameter values deviated from the basal set.
These parameter values were randomly selected from intervals
bounded by values with 50% changes from the basal set. Among
these 104 randomly perturbed models, 1964 of them had improved
performance score (less than 0, or better-than-basal) for Metric I,
202 of them had improved score for Metric II and 423 of them
had improved score for Metric III (Fig. 6A). However, only 2 of them
had improved scores for all three metrics. We performed a permu-
tation test and confirmed that this number is significantly low
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(Fig. 6B, upper panel, p < 10�4). Furthermore, when a model had
a better-than-basal score in one or more metric, the probability
that it also had a lower-than-basal score in one or more metric
was 99.8%, a number that is significantly higher than expected
(Fig. 6B, lower panel, p = 0.006). These results show that there
exists a tradeoff in optimizing the three performance objectives
of SAM patterning. We then asked which pairs of metrics have a
significant tradeoff problem when multiple kinetic rate constants
are varied, and we found that if a model has a better score for Met-
ric I or Metric II (lateral inhibition and stability), there is a signifi-
cantly high probability that it has a poorer score for Metric III
(divergence), suggesting that there is a pairwise tradeoff between
optimizing for WUS-CLV3 diversity and other features (Fig. 6C).
Other pairs of metrics did not show significantly high probability
of having such opposite trends of performance change (Fig. 6C).
Overall, these results suggest that there may exist a tradeoff among
the three objectives of the SAM patterning when the system varies
its rate constants to achieve those goals simultaneously.
3. Discussion

3.1. Two-axis control of WUS expression in the SAM

Patterning of WUS and CLV3 expression in the SAM is consid-
ered to be a crucial system for stem cell maintenance in plants.
In this study, we built a multicellular model describing the key
gene regulatory network controlling SAM patterning. In particular,
we considered signals that regulate WUS expression from both the
middle SAM and peripheral regions. This differs from previous
models which focused on the middle SAM region around the
apical-basal axis [11,13,16–18,22–25]. Our model shows how the
system combines the peripheral signal EPFL with the CLV3 signal
originating from the top central SAM to restrict WUS expression
to the organizing center in the meristem rib. In addition, this
peripheral signal synergizes with the WUS and HAM signals from
the meristem rib to restrict CLV3 expression to the top central
SAM. Notably, this localization of CLV3 expression can be achieved
without assuming pocket-like expression regions of any inhibitory
factor [13,22]. The prominent roles of EPFL in regulating SAM pat-
terning by modulatingWUS and CLV3 expression is consistent with
its key roles in plant development that were identified previously
[28–30]. The model reveals a remarkable cooperativity of the
peripheral and middle signals for shaping the patterning of WUS
and CLV3 expression. This cooperativity is particularly manifested
in our observation that WUS expression in the lateral SAM region
is controlled by both CLV3 and EPFL, each of which has partial
but significant impact on WUS inhibition. Our results suggest that
stem cell maintenance in Arabidopsis requires a highly regulated
crosstalk between the middle and peripheral regions of the SAM
rather than signals in the middle apical-basal axis alone.
3.2. Patterning and size regulation of the SAM and model limitations

Our modeling study focuses on gene expression patterning,
which has a major influence on the size of the SAM. Because of
the central role of WUS in maintaining the stem cell population
and its positive correlation with cell proliferation rates, it is reason-
able to use changes in the amount of WUS in the SAM as an indi-
cator for changes in SAM size. For example, upregulation of WUS
that was observed in erf, clv3 and other mutants is expected to cor-
relate with an increase of stem cell populations, which in turn
gives rise to an increase in SAM size. This is consistent with previ-
ous experimental observations under such conditions [29,32,37–
39]. However, the interplay between cell proliferation and gene
expression patterning is bidirectional, dynamic, and more complex



Fig. 5. Influence of parametric changes on three performance objectives of SAM patterning. A. Illustrations of the three performance metrics of SAM patterning. See Methods
for details of these metrics. B. The performance scores upon perturbations of 23 parameters. Each parameter was decreased and increased by 2-fold and simulation was
performed in the same procedure as that with the wild-type (basal) model. Steady state SAM patterning was scored based on the three metrics, and the scores were compared
with those obtained with basal model. Blue: perturbed model has better score than basal model does. Red: perturbed model has poorer score than basal model does. White:
perturbed model and basal model have the same score. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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than this simple inference assumes. For example, lateral expansion
of the SAM during development could in theory reduce the effect of
EPFL on the middle region unless the production rate of EPFL scales
with the expansion. Understanding these forms of interplay will be
important for quantitative characterization of SAM patterning and
size control. Furthermore, it has been shown that the size and the
shape of the SAM undergo significant changes in processes such as
ontogeny [40], suggesting the complexity of the size-patterning
interplay. Finally, cytokinin and auxin hormones, transcription fac-
tor SHOOTMERISTEMLESS (STM), microRNAs and other CLE pep-
tides may influence meristem patterning directly, by regulating
the rate of cell proliferation, or by interacting with the WUS-
CLV3 loop [41–48]. Ultimately, these regulators also need to be
incorporated into the model of SAM regulation once their role in
the SAM and the interplay with the WUS-CLV3 loop are clearly
defined. Nonetheless, our work provides critical insights into the
middle-peripheral interplay of SAM patterning, which can serve
as a foundation for future development of more complex and more
realistic models of SAM growth.

3.3. The roles of paradoxical feedbacks

It has been long considered that the negative feedback between
WUS and CLV3 plays an essential role in maintaining the stem cell
population in the SAM [9,10]. The self-limiting property of negative
feedback ensures the stable expression of both genes. However,
recent data suggest that the interactions between WUS and CLV3
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might be more complex than a negative feedback loop: WUS and
HAM from the meristem rib can inhibit CLV3, which is prevented
from being expressed below the subepidermal layer [13–15,49].
As such, WUS and CLV3 are involved in a negative feedback loop
as well as a positive (or double-negative) feedback loop. The latter
network motif is known for its function in generating switch-like
behaviors and formation of tissue boundaries during development
[50,51]. Consistent with these features, we found that this inter-
connected, paradoxical feedback WUS-CLV3 network supports
the stability of WUS expression against alteration of kinetic rates,
and it facilitates the diversification of SAM cells, in particular cells
in the middle region, into WUSon and CLV3on cells. Although the
two types of cells do not have a clear boundary along the apical-
basal axis at single cell-layer resolution, the formation of a hetero-
geneous population with stable phenotypic composition is consis-
tent with established theories about positive feedback loops [52].

Since the homeostatic function of a negative feedback loop does
not necessarily depend on the spatial separation of two types of
molecules, why does the SAM need to separate WUSon and CLV3on

cells? One plausible reason is that the stem cell transcriptional pro-
gram depends on a high concentration of CLV3 and a low concen-
tration of WUS. Another possibility is that the differential cell
proliferation rates along the apical-basal axis [23], which can be
governed by heterogeneous expression patterns of WUS and
CLV3, may play essential roles in maintaining the structure of the
SAM. Future work is warranted to connect these molecular and cel-
lular features of SAM patterning to the physiology of plants.



Fig. 6. Tradeoffs in optimizing parameters to gain better performance of SAM patterning. 10,000 models were generated with random parameter values around those of the
basal (wild-type) model. These values were chosen from a uniform distribution bounded by ±50% from the corresponding basal values in the wild-type model. Each model
was simulated in the same way as with the basal model, and then the steady state SAM patterning was scored with the three metrics mentioned in Fig. 5 (see Methods for
details). Positive scores mean poorer performance than wild-type model. Negative scores mean better performance than wild-type model. A. Score distributions in phase
space of all pairs of metrics. Red numbers show cases in quadrants, e.g. numbers for the lower left quadrants show the numbers of models with improved scores from basal
model in two metrics. Models with scores on the x or y axis were not included in red numbers. Spearman correlation coefficient and its p-value are shown in each panel. B.
The scores of the perturbed models were arranged in a 10,000 � 3 matrix. Each of the three columns were randomly permutated 10,000 times independently, and the
resulting 10,000 matrices were analyzed based on statistics of their rows. Blue: histogram of scores or probabilities with permuted scores. Red: Observed scores or
probabilities with the perturbed models. Top panel shows the cases with three better (improved) scores (there are two observed cases out of the 10,000). Lower panels show
the probability of obtaining at least one poorer score under the condition of obtaining at least one better score. C. Pairwise conditional probabilities of obtaining opposite
performance in two metrics. The right-tail p-value is >0.05 unless otherwise indicated. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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3.4. Tradeoffs in optimizing the SAM gene regulatory network

Tradeoffs in designing biological circuits have been exten-
sively studied previously; e.g., the tradeoff between noise atten-
uation and speed of response, and that between maximizing
information content in individual cells and cell populations
[53,54]. However, the roles of tradeoffs in complex traits such
as tissue patterning remain elusive. Although the exact physio-
logical function of SAM patterning is only partially understood,
it is clear that the structure of the SAM gene regulatory network
and its underlying biochemical properties serve multiple pur-
poses, because diverse alterations of SAM patterning are often
associated with abnormal development ranging from organ for-
mation failure to nonoptimal size of organisms [6,7,28,33]. Our
modeling study revealed that the kinetic rates in the SAM gene
regulatory network have a general tradeoff among achieving
multiple ‘desired’ features of patterning. For example, parameter
sets that can achieve more diverse populations of WUSon and
CLV3on cells are likely associated with less stability in terms of
WUS expression, or less regulation of WUS expression in the lat-
eral region. These nontrivial tradeoffs may act as a complex
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selection pressure similar to multi-objective optimization prob-
lems, and they can play crucial roles in shaping the structure
and kinetic rates of the SAM regulatory network through evolu-
tion. Furthermore, while there are a wide variety of SAM regula-
tions in plants and a single optimal set of biochemical kinetic
rate constants may not exist even within a single species, the
tradeoff among the goals may serve as a general principle in
shaping these kinetic rate constants.

Overall, our model includes a few key elements for controlling
SAM patterning that were not considered previously. It captures
many patterning phenotypes observed under normal conditions
and with genetic perturbations. It offers insights into the interplay
between peripheral and middle SAM signals, the intricate feedback
regulations, and the principles governing the network design of
this system.
3.5. Resource availability

Computer code for reproducing all key results and figures is
available at: https://github.com/lfsc507/sam

https://github.com/lfsc507/sam
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4. Methods

4.1. Construction of mathematical model

To model the spatiotemporal dynamics of gene regulation in the
shoot apical meristem (SAM), we considered 51 cells that are orga-
nized in a dome-like structure. We estimated this number of cells
in the SAM from Chen et al. [38], and a similar number was used in
a recent SAM model [13]. We described this 2D cellular network
with 51 points within a half-circle with a radius of 25 lm [38].
In the model, the diffusive EPFL ligands are synthesized in the
peripheral regions distant from the middle apical-basal axis and
inhibit the expression of both WUS and CLV3 through binding to
their receptors which are assumed to be broadly expressed in the
SAM [28,29]. CLV3 is a diffusive peptide, andWUS is a transcription
factor that moves across cells [11,55,56]. In addition to the WUS-
CLV3 negative feedback and these lateral regulators, our model
describes a HAIRY MERISTEM (HAM) signal that originates from
the rib zone and inhibits CLV3 expression in the organizing center
[13]. In this model, we do not assume that HAM can move across
cells due to the lack of experimental evidence. The spatial distribu-
tion of HAM expression is established by a diffusive microRNA that
is not considered in the model explicitly [46]. It has been shown
that HAM and WUS control gene expression synergistically [49],
and that high concentration of WUS may also contribute to CLV3
downregulation [14,15]. We therefore assumed that the inhibition
of CLV3 expression by HAM signal depends on WUS. As such, WUS
has a paradoxical role (both activation and inhibition) in regulating
CLV3 in the presence of HAM. Finally, we considered a CLV3 inde-
pendent positive feedback involving WUS. This feedback may be
supported by a WUS-cytokinin mutual activation loop: it was pre-
viously shown that cytokinin activates WUS expression [23,39,57],
whereas WUS derepresses cytokinin signal by inhibiting Type A
ARABIDOPSIS RESPONSE REGULATOR (ARR) genes which act as inhi-
bitors of cytokinin [14,58,59]. In addition, the WUS autoactivation
loop may be supported by other factors [27]. Based on these
assumptions, dynamics of six interacting species representing con-
centrations of regulatory molecules is described with nonlinear
ordinary differential equations (ODEs) in each cell (point) of the
model (additional spatial constraints are shown in Fig. 1B):

dWp

dt
¼ kWpWr � bWWp þ DWDWp ð1aÞ
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dt
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dHp

dt
¼ kP � bPHp ð1fÞ

here, state variablesWr ,Wp, Cr , Cp, L andHp represent the concentra-
tions (or strengths) of WUS mRNA, WUS protein, CLV3 mRNA, CLV3
protein, EPFL, and HAM respectively. H represents a meristem rib
signal that combines bothHAMandWUS, the latter of which inhibits
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CLV3 expression at high concentration. A full list of parameter
descriptions and their numerical values is available in Table S1.
Briefly, kX is the production rate constant of molecule X; bX is the
degradation rate constant of molecule X; KXY is the threshold of acti-
vation or inhibition of X by Y . nXY is the cooperativity of activation or
inhibition of X by Y; DX is the rate constant of passive diffusion-like
transport of molecule X; D is the Laplace operator describing gradi-
ents of concentrations, which govern passive diffusion-like trans-
port; DX has a unit of concentration per unit area. DX was adjusted
by multiplying with a scaling factor hli=l, where l represents the dis-
tance between the centers of the two cells [60]; and neighboring
cells are defined as cells that are located within a radius of 10 lm.
We neglected the subcellular geometry of the cells, their contact
areas and the influence of mechanics in this study (the effected con-
tact area for WUS transport cannot be directly inferred from total
contact area of plasma membrane) [13]. The diffusion of EPFL and
CLV3, and the diffusion-like symplastic transport ofWUS are respon-
sible for the intercellular communication in the model. We used Hill
function to describe nonlinearity in the gene regulation. Previous
models of the SAM and other complex systems have used similar
nonlinear functions [17,19,22,61]. aC is a constant for us perturb
the negative feedback regulation (see next section). When a mole-
cule is controlled by multiple factors, we assumed a multiplicative
form of Hill functions (AND-gate-like) (for example, nonlinear inter-
action of WUS and HAM may arise from their physical interactions
[49]), except for the inhibitions of WUS by CLV3 and EPFL, which
were assumed to be additive (OR-gate-like). Because the absolute
concentrations of these molecules have not been measured experi-
mentally, we used an arbitrary unit (a.u.) to describe concentration
(or strength) of each molecule. Once these measurements become
available, one can easily scale these variables to fit to specific con-
centrations. We used no-flux boundary condition for the model,
and this is similar to a recently published SAM model [13].

We fit the parameters to known patterning phenotypes of the
SAMunder normal and genetically perturbed conditions (see details
of mutant models below). These phenotypes are listed in Table 1.
Because only qualitative information is available from the experi-
mental data, we performed the fitting manually. Here, we do not
attempt to obtain an optimal set of parameters that give the best
fit to experimental data. We instead discuss the general trends of
the influence of eachparameter onmultiple features of the SAMpat-
terning (see Performance Metrics). To perform a simulation for a
SAM system, we solved the system of ODEs numerically using the
Tellurium package [62]. The initial concentrations for all variables
were set to zero. An example of the time course solution of the wild
type SAM is shown in Movie S1. For all our analyses, steady state
solutions (at Day 100) were used to determine the patterning of
the SAM.
4.2. Simulations for mutants

For eachmutant SAMmodel, we simulated the genetic perturba-
tion by setting the production rate constant for the knocked-out
gene(s) to zero. These parameters include kWr for the wus mutant,
kCr for the clv3 mutant, kL for the erf mutant, and kH for the ham
mutant.

To examine the roles of individual interactions in the gene reg-
ulatory network, e.g. the activation of CLV3 by EPFL, we set the
parameters describing the activation/inhibition thresholds (K) of
the interactions to 1000 a.u., which exceeds the maximum concen-
trations of the activators/inhibitors.

All other parameters were kept the same as those in the wild-
type model. Steady state distributions of all modeled molecules
were obtained with the same procedure as the simulation for the
wild-type SAM.



Z. Liu, E.D. Shpak and T. Hong Computational and Structural Biotechnology Journal 18 (2020) 3877–3889
4.3. Normalization of concentrations for visualization

All analyses of molecular abundance (concentrations) were
based on raw values obtained from the simulations. However,
because visualization of the SAM patterning with multiple mole-
cules would involve using the same color scale (jet colormap) for
different ranges of concentrations, we normalized the concentra-
tions of all molecules by dividing all values by their own maximum
concentration across all genotypes before visualization. Therefore,
the ranges of all visualized abundance are [0, 1], where the value 1
effectively represents the maximum concentrations of individual
molecules across all simulations.

4.4. Models without feedback loops

To examine the roles of feedback loops on SAM patterning, we
created two alternative models, each of which has a feedback loop
(negative or positive) removed from the basal (wild type) model.
To ‘knockout’ a feedback loop, we first removed the regulation of
CLV3 by either the WUS or HAM signal by setting threshold con-
stants (K) to 1000 a.u.. The removal of these interactions generates
prominent changes of SAM patterning. For example, if WUS-to-
CLV3 inhibition is removed from the basal model, then CLV3 is
not expressed in the SAM and WUS is highly expressed compared
to the basal model. However, these changes may not reflect the fit-
ness advantage of the feedback loop because the other kinetic rate
constants can be altered to compensate for the effect of the
removal of the interactions. We therefore further adjusted the
parameters to mimic this compensation. For the negative feedback
knockout model, we introduced an activation signal for CLV3 by
letting ac ¼ 1, reducing kCr by 15%, and reducing kWr by 50%. With
this adjustment, the WUS expression pattern became comparable
to the wild type. For the positive feedback knockout model, we
reduced kCr by 85% and reduced kWr by 50%. The WUS expression
pattern with this model also became comparable to the wild type.
After these changes, we compared the feedback knockout models
with the basal model in terms of WUS expression patterning in
similar dynamic ranges.

4.5. Performance metrics for SAM patterning

To quantify the effect of changes in parameter values on SAM
patterning, we used three performance metrics. These metrics
are used to describe traits that might be critical for normal plant
physiology rather than fit to experimental data, which are not
available in a quantitative manner in most studies of SAM pattern-
ing. We do not claim that plants optimize their biochemical rate
constants to achieve these three goals in general, because there
are many other objectives that plants must achieve to gain better
fitness. Our focus is rather on the relationship among these three
goals.

Metric I (lateral inhibition) describes the ability of the system to
inhibit WUS expression in the lateral region of the SAM. Specifi-
cally, it is the total WUS mRNA at steady state in 34 cells that are
closest to the peripheral boundaries, i.e.

M1 ¼
Xl

i

wi ð2Þ

where l is the total number of cells in the lateral region (34), and
wi is the steady state WUS mRNA concentration in cell i.

Metric II (WUS stability) measures the deviations of total WUS
in the SAM from unperturbed models to perturbed models when
the mRNA production rate constant kWr is reduced by 0–50%. We
chose 10 levels of such reduction in the parameter in the interval
[0, 0.5], and obtained the deviation score given by:
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M2 ¼
Xm
i

Xn
j

Wi;j �W0
j

���
��� ð3Þ

where m is the number of perturbations (10), n is the number of
cells the SAM (51), and Wi;j is the steady state level of WUS protein

in cell j with perturbation i, and W0
j is the steady state level of WUS

protein in cell j with the unperturbed parameter set.
Metric III (WUS-CLV3 heterogeneity) describes the size and

heterogeneity of the cell population consisting of WUSonCLV3off

and WUSoffCLV3on cells in the middle region of the SAM. First, the
WUS and CLV3 expression was binarized with a threshold of 0.5 a.
u.. Next, we calculated the heterogeneity score with the following
function:

M3 ¼ x� yj j � xþ yð Þ (4)where x is the total number of WUSon-
CLV3off cells in the middle region (17 cells closest to the central
axis) of the SAM, and y is the total number of WUSoffCLV3on cells
in the same region.

The scores of the basal (wild type) model are 5.3, 0.48 and �8
for M1, M2 and M3 respectively. We perturbed the parameters in
the basal model in two ways and then examined the performance
of the perturbed models (note that this perturbation is different
from that in Metric II). In the first analysis, we decreased each
parameter of the model by 2-fold, and then increased it by 2-
fold. These two perturbations were performed for each parameter
and six scores were obtained. In the second analysis, we perturbed
all parameters in the model by randomly selecting their values
from the intervals [u=2, 3u=2], where u is the basal value of each
parameter. These parametric changes represent the alterations of
biochemical rate constants that may occur through evolution to
achieve desired fitness goals.

Since we are interested in how these performance scores (M1,
M2 and M3) change when the parameters of the model are system-
atically perturbed from the basal set, we further normalized the
raw values of these scores with the performance score obtained
from the basal parameter, i.e.

m ¼ M �M0

M0
���

���
ð5Þ

whereM is the performance score of the perturbed model, andM0 is
the performance score of the basal model. The same normalization
was used to scale the scores for all three metrics. As such, if the per-
turbation gives rise to a performance better than that obtained with
the basal set, the normalized score is negative. If the performance is
poorer than that with that obtained with the basal set, the normal-
ized score is positive.

4.6. Permutation test

The parametric perturbations and performance scoring
described in the previous section generate performance scores that
can be organized in an n� 3 matrix, where n is the number of per-
turbations. In our random perturbation of parameters, the value of
n is 104. We are interested in whether there exists a significant
tradeoff in obtaining better scores of all three metrics when multi-
ple parameters are perturbed. We first described a possible tradeoff
in a small number of cases inwhich all three performance scores are
improved (m < 0) in these n perturbations. Out of the 104 paramet-
ric perturbations, only 2 of them gave rise to three negative scores.
To test whether this number is significantly low, given that the total
numbers of improved (better than basal) scores for the three met-
rics are 1964, 2020 and 423, respectively, we permutated each col-
umn of the matrix independently for 104 times. We next compared
the distribution of the numbers of cases in which all three perfor-
mance scores are improved in these 104 matrices with the observed



Z. Liu, E.D. Shpak and T. Hong Computational and Structural Biotechnology Journal 18 (2020) 3877–3889
number of cases (2), and we calculated the empirical p-value with
the area of the left-tail of the distribution with the right bound of
2, i.e. the probability of observing 2 or less cases.

The same strategy was used to quantify the significance of other
descriptions of tradeoffs. We tested whether there is a significantly
high probably of obtaining one or more poorer-than-basal score
when an improved score (in anymetric) is obtained with a parame-
ter set. This analysis was then performed for each pair ofmetrics, i.e.
permutation tests for six conditional probabilities were conducted.
In these analyses, empirical right-tail p-values were obtained.
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