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ABSTRACT Light-entrained circadian clocks confer rhythmic dynamics of cellular and molecular activities to animals and
plants. These intrinsic clocks allow stable anticipations to light-dark (diel) cycles. Many genes in the model plant Arabidopsis
thaliana are regulated by diel cycles via pathways independent of the clock, suggesting that the integration of circadian and light
signals is important for the fitness of plants. Previous studies of light-clock signal integrations have focused on moderate phase
adjustment of the two signals. However, dynamical features of integrations across a broad range of phases remain elusive.
Phosphorylation of ribosomal protein of the small subunit 6 (eS6), a ubiquitous post-translational modification across kingdoms,
is influenced by the circadian clock and the light-dark (diel) cycle in an opposite manner. To understand this striking phenomenon
and its underlying information processing capabilities, we built a mathematical model for the eS6 phosphorylation (eS6-P) con-
trol circuit. We found that the dynamics of eS6-P can be explained by a feedforward circuit with inputs from both circadian and
diel cycles. Furthermore, the early day response of this circuit with dual rhythmic inputs is sensitive to the changes in daylength,
including both transient and gradual changes observed in realistic light intervals across a year, because of weather and seasons.
By analyzing published gene expression data, we found that the dynamics produced by the eS6-P control circuit can be
observed in the expression profiles of a large number of genes. Our work provides mechanistic insights into the complex dy-
namics of a ribosomal protein, and it proposes a previously underappreciated function of the circadian clock, which not only pre-
pares organisms for normal diel cycles but also helps to detect both transient and seasonal changes with a predictive power.
SIGNIFICANCE Circadian clocks provide rhythmic dynamics that anticipate light-dark cycles in a consistent fashion.
Many genes in plants are controlled by both the circadian clock and light-dark cycles through independent pathways. We
built a mathematical model to understand a recent observation that circadian rhythms and light-dark cycles drive the
phosphorylation of ribosomal protein eS6 with opposing phases. We found that this phenomenon is governed by a
feedforward circuit involving clock and light-dark cycles. With realistic photoperiod data, we show that the circuit can detect
both transient (weather) and long-term (seasonal) daylength variations at the beginning of a day, suggesting rich dynamics
arising from clock-light signal integration and an important property of the circadian clock in robustly detecting changes in
light conditions.
INTRODUCTION

Circadian clocks provide animals, plants, and certain mi-
crobes with rhythmic dynamics. These circadian pace-
makers confer fitness advantages to the organisms by
establishing stable anticipation of diel light-dark cycles
(1,2) as well as regulating broad morphological changes
over the course of the year (3). In the plant model organism
Arabidopsis thaliana, the circadian clock consists of at least
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four interacting gene modules that form negative feedback
loops, which govern an intrinsic oscillator (4,5). The expres-
sion dynamics of several hundred genes in A. thaliana are
controlled by this circadian oscillator (6,7). The circadian
oscillator retains its essential dynamical features under con-
stant light (LL) conditions, reflecting its intrinsic nature (8),
but the phase of the oscillations can be adjusted in a process
called entrainment by the lights-on signal at dawn (5,9). In
addition, however, the light-dark cycle regulates a large
number of genes in a clock-independent fashion (8,10).
Therefore, molecular activities in plants are influenced by
at least two periodic signals. Previous studies have found
that cellular activities in A. thaliana, such as the abundance
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of the regulator of flowering time CONSTANS (CO) and the
cytosolic calcium concentration, require signals from both
the clock and the light-dark cycle to regulate timing (i.e.,
the phase of peak activity) (8,9,11). For example, for
many messenger RNA (mRNA) transcripts, the circadian
clock leads to a moderate phase shift in the onset or peak
time as compared to the light cycle alone (8,9,11). However,
these paradigms only represent one of the many diverse
coregulation modes of clock-light signal integration. It re-
mains unclear whether the integration of circadian and
diel light-dark cycles underpins other paradigms of signal
processing.

The phosphorylation of ribosomal protein of the small
subunit 6 (eS6) is a post-translational modification that oc-
curs in a wide range of organisms including animals and
plants (12–14). Mice that have only a nonphosphorylatable
eS6 show abnormalities at the organismal level (e.g., muscle
weakness), indicating that this modification is functionally
significant (15). However, although it has been suggested
that the eS6 phosphorylation (eS6-P) is implicated in ribo-
some biogenesis in mammals (12), its biochemical conse-
quence and specific activity, including its molecular role
in A. thaliana, are largely unknown (13). Interestingly,
eS6-P is widely used as a bioreporter for the activity of
target of rapamycin (TOR) kinase, a central controller of
cell growth and aging (16,17). We recently found that
eS6-P in A. thaliana is coregulated by both the circadian
clock and the diel cycle as eS6-P exhibits cycling behavior
both in a severely clock-deficient strain and under LL con-
ditions (18). Unlike other extensively studied cellular pro-
cesses, eS6-P is controlled by the clock and light-dark
cycles in a strikingly opposite manner; in the wild-type
strain under LL conditions, the circadian clock drives eS6-
P with a peak during the subjective night, whereas in a
clock-deficient strain, the diel light-dark cycle drives eS6-
P with a peak during the day (18,19). However, the biolog-
ical significance of this remarkable phenomenon at cellular
and organismal levels remains elusive.

In this study, we constructed a mathematical model to
examine the signaling network that regulates eS6-P in
A. thaliana. We calibrated the model with experimental
measurements of the circadian clock and eS6-P under
various conditions. We found that the key dynamics of
eS6-P can be explained by a feedforward loop that con-
nects the periodic light signals to eS6-P with a direct arm
and an indirect arm via the circadian clock. Although
this feedforward loop is largely incoherent at the steady
state of a symmetrical light-dark cycle (12-h light and
12-h dark), the amplitude of its output exhibits a high
sensitivity to variations in daylength because of the interac-
tion between the two cyclic components in the loop.
Notably, we found a characteristic early day peak of eS6-
P that detects and anticipates long days. Furthermore, we
combined the model with realistic photoperiod data con-
taining both transient perturbations and long-term varia-
tions of light-dark cycles and demonstrated that the
detection of daylength variations by this circuit communi-
cates information about changes of both the season and the
local environment throughout the year. By comparing our
model with several representative competing models with
various circuits transmitting only light signals, we found
that the robust detection of day length variations requires
both the circadian clock and the clock-independent light
sensor. Our work demonstrates a remarkable information
processing capacity of a feedforward loop that integrates
circadian and light-dark cycles, and it reveals a previously
underappreciated role of the circadian clock in anticipating
and predicting the changes in light conditions rather than
the stable photoperiod.
METHODS

Framework of mathematical models

We modeled gene regulatory networks that control eS6-P using ordinary

differential equations (ODEs). Because most interactions involve high-or-

der molecular interactions, including transcriptional regulation and multi-

site phosphorylation, we used a generic form of nonlinear ODEs suitable

for describing both gene expression and molecular interaction networks

(20–23). Each ODE system in the model has the following form:

dXi

dt
¼ gi

�
FðsiWÞi�Xi

�

1

FðsWÞ ¼ ð1þ e�sWÞ

 XN !

Wi ¼ uo

i þ
j
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Here, Xi is the activity of protein i. On a timescale 1/gi, Xi(t) relaxes

toward a value determined by the sigmoidal function, F, which has a

steepness set by s. The basal value of F, in the absence of any influencing

factors, is determined by u0
i . The coefficients uj/i determine the influ-

ence of protein j on protein i. N is the total number of proteins in the

network. Activity values are scaled from 0 (absent) to 1 (saturation).

For eS6-P, we modeled a single site phosphorylation (S237) that was

assumed to be independent of other phosphorylation sites, so we used first

order reaction rate law that describes the phosphorylation and dephos-

phorylation. All variables and parameters are dimensionless. One time

unit in the simulations corresponds to �2.53 h (9.5 units per cycle, which

is near the natural oscillatory period of the repressilator loop), but we

transformed the time unit of the output to 1 h, such that a 24-h period

reflective of an actual day is used for all subsequent analyses and

visualizations.

The clock component of our model describes four species (LHY/CCA1,

evening complex (EC), PRR9/7, and PRR5/1), and the light-sensing

pathway has two species (TOR and S6 kinase (S6K)). Together with eS6-

P, our full ClockþLight model has seven ODEs in total. Numerical solu-

tions to the ODEs were obtained with Tellurium (24). The equations of

the full model are given in Supporting Materials and Methods, and com-

puter code for simulating the models under various conditions and repro-

ducing key figures is available at https://github.com/panchyni/eS6_

Models and Data S1.
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Parameter estimation

Because the clock component of the model is independent of other elements

except for the light input, we first fit the clock components of the model (4

ODEs) by applying qualitative criteria to ensure that it properly replicated

features of the circadian clock (18). We approached optimization the same

way as in Locke at al (5). and De Caluwe et al. (25) by using objective func-

tions that impose costs on deviating from expected, qualitative behavior.

Specifically, we penalized the model for 1) having the LHY/CCA1 compo-

nent peak more than 1 h before or after dawn in long (16L:8D) days, 2) hav-

ing the same deviation described in (1) in 12L:12D days, 3) having a period

under LL outside of 24–25 h, 4) having a period under constant darkness

outside of 24–28 h, and 5) having an amplitude of less than 0.1 (i.e.,

10% of maximal activity) in any component. These criteria defined by in-

tervals of desired output were used to construct an objective function to

evaluate the models. When calculating the objective score, each of the

five terms is zero if the output falls in the interval and is the squared differ-

ence between the output and the boundary of the interval if the output falls

outside the interval. Before optimizing the model parameters, we defined a

hyperbox in the parameter space that is bounded by biologically plausible

parameter ranges, particularly with regard to the direction of regulation and

balance of rates. In particular, initial values were drawn from a uniform dis-

tribution between (�10,10), except in cases in which the nature of the

parameter would naturally limit it to positive values ((0,10), time scaling

factors and basal promoters), negative values ((�10,0), the negative regula-

tion of clock components by each other), and values R1 ((1,10), steepness

parameters). The distribution of value for each parameter is shown in Table

S1. A population of 40 vectors, each containing 24 parameters, generated

by Latin hypercube sampling, were used as the initial estimation. Starting

with this population, we implemented differential evolution (DE) optimiza-

tion algorithm (26,27) with a mutation rate between 0.35 and 0.65 and a

crossover rate of between 0.75 and 0.95 and let the optimization run for

15,000 generations of DE or the convergence of the evolution. (Figs. S1

and S2). We performed 250 runs of such optimization to ensure that the per-

formance of the selected parameter set can be reproduced. For fitting eS6-P,

we selected among viable models which accurately reflected clock behavior

and selected the one with the greatest dynamic range among the clock com-

ponents. Accurate clock behavior was first evaluated by evaluating all com-

ponents under LD, LL, and constant dark conditions (Fig. S1). We next

compared the activity of each component against the expression pattern

of the genes for the proteins they are meant to emulate. After the approach

used in De Caluwe et al. (25), we obtained expression data from the Diurnal

Database (28) and normalized the values for each gene onto the same 0 to 1

activity scale that our model uses for its components and then plotted the

relevant genes pair against each component (LHY1 and CCA1 for LHY/

CCA1, ELF4 and LUX for EC, PPR9 and PRR7 for PRR9/7, and PRR5

and PRR1 for PRR5/1, see Fig. S2).

Next, we used the time course measurement of eS6-P to estimate the pa-

rameters controlling the regulation of eS6-P by clock components (LHY/

CCA1, EC, PRR9/7, and PRR5/1, which correspond to C1, C2, C3, and

C4, respectively) and the light-induced TOR pathway (18). The data set

has Western Blot quantification of eS6-P for 78 h at a 6-h interval. In the

model, the eS6-P variable describes the percentage of the amount of eS6-

P with respect to the total eS6. We therefore inferred the fractions of

eS6-P from the Western blot quantification of the experiment and scaled

these values based on an approximation of the eS6-P saturation value in-

ferred from Williams et al. (29). Two-dimensional gel electrophoresis

data from this study suggest that a majority but not all eS6 undergoes phos-

phorylation and that phosphorylation spreads across several sites that may

or may not be phosphorylated at the same time (see Table 1 in (29)). As the

data were not quantified in the original study and estimations based on im-

age analysis were broad (15–77% per site), we chose a conservative esti-

mate of 0.40 as the saturating value. This normalization gives the raw

data a range of 0.01–0.4 and pooled data (described below) a range of

average values from 0.06 to 0.31. This procedure allows us to avoid unre-

alistic assumptions with either no phosphorylated (eS6-P¼ 0) or fully phos-
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phorylated (eS6-P¼ 1) in the system. Because these values are approximate

and mainly meant to avoid fitting to unrealistic, extreme values of eS6-P, the

model describes eS6-P in arbitrary units (a.u.) rather than actual

percentages.

We regularized the transformed data by pooling the data points from the

same Zeitgeber time (ZT), and we used the pooled mean and variance for

each time point to calculate the log likelihood. LL condition was emulated

in the model by fixing the value of light to 1 and the CCA1 overexpression

by fixing the basal production of CCA1 to 50. To examine steady-state

behavior under each condition, we entrained the model with 1 day of dark-

ness followed by 10 days of the given condition before comparing the

model to the experimental data on the 12th day, mirroring the entrainment

of the underlying experimental data. The objective function for the param-

eter optimization was defined by the log-likelihood function that quantifies

the fit of the simulation results to the experimental data with variabilities.

Log-likelihood estimates for all time points of eS6-P contribute to the

objective function equally in an additive manner. As with clock compo-

nents, we used the DE-based optimization algorithm to estimate the remain-

ing parameters. All algorithmic parameters were the same as the

optimization for the clock component, expect for the maximal number of

generations (5000). We performed 1400 optimization runs, and among

the optimized parameter sets, we selected the best preforming model with

a moderate peak to perform the subsequent analyses. Note that the majority

of the models in the lowest fifth percentile of likelihood values exhibited the

same behavior as the chosen model, including cycling under all three exper-

imental conditions and an early eS6-P peak under long day (LD) conditions

(Fig. S3 A). Models with larger likelihood scores (the next five percentiles)

show neither this earlier peak nor cycling under LL conditions (Fig. S3 B).

A full list of model parameters can be found in Table S1.
Applying a detailed clock to our eS6-P model

In addition to our simplified four-component clock model, we also tested

our eS6-P model using a more detailed circadian clock component from

De Caluwe et al. (25), which has the same overall network topology but

explicitly considers protein and mRNA concentrations (Fig. S4). We added

our equation for eS6-P regulation to this full clock model and used the set of

same optimized parameters that we obtained from the simplified model to

simulate eS6-P with the light-dark cycle. The CCA1 constitutive overex-

pression mutant was simulated by removing the clock and light regulated

components from the equations for CCA1/LHY transcription (i.e., setting

the production rate to maximum). We used the protein concentration of

each pair of clock components, representing the mean protein concentration

of the two gene products, in place of our generalized clock component ac-

tivity values. We scaled the concentration values to a range of (0,1) using

the minimal and maximal values of that protein pair. However, in the

case of CCA1 overexpression, we assumed that the concentration is effec-

tively saturated at the maximal wild-type value as the average value of

CCA1/LHY and PRR9/7 increased by more than fivefold. All parameters

for eS6 regulation were the same as in the model with the four-component

clock module, except for the regulatory effect of the TOR pathway, which

was increased by 10% to avoid an unrealistic saturation point of eS6-P un-

der wild-type and CCA1 overexpression conditions.
Alternative models

To illustrate the unique performance of the ClockþLight model that con-

tains the clock component, we built three alternative models that describe

plausible ways in which the eS6-P can transmit the light signal to achieve

detection of daylength variations at the beginning of a day. Note that it is

trivial for a system to detect daylength variations at the end of a day

(e.g., through integration of, or slow response to, light signals), and this

detection may not be as useful as the early day detection in terms of antic-

ipating environmental changes. The three alternative models are as follows:
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1) a linear circuit that transmits light signals to eS6-P, 2) an incoherent feed-

forward loop (IFFL) that produces an early day peak similar to what the

ClockþLight model does under long day (LD) condition, and 3) a coherent

feedforward loop that allows for a slow decline of eS6-P upon the with-

drawal of light signals. Parameter values of these models were manually

chosen to give characteristic responses (Table S2).
Mutual information between daylength variations
and eS6-P responses

To examine the transmitted information from daylength variations (signal)

to eS6-P abundance (response) when the system is subject to external or in-

ternal noise, we introduced uncorrelated multiplicative white noise to ODEs

for the light and eS6-P as dx/dt ¼ f(x1, x2,., xn) þ mx � x � dW, where dW

is a Wiener process that can be discretized as dW � Nð0; 1Þ, ffiffiffiffi
dt

p
, where

N(0,1) denotes a normally distributed random variable with zero mean

and unit variance, and mx represents the amplitude of the fluctuation. To

quantify the information transmission, we used mutual information be-

tween signal S and response R (30). In the eS6-P system, S represents the

perturbation of the time (DtND) at which the system receives a light signal

from a normal light-dark cycle (e.g., 12-h light and 12-h dark), and R rep-

resents the eS6-P abundance. The responses were the maximal eS6-P levels

in the 4-h time window after dawn. The calculation of the mutual informa-

tion was performed with the discretized form (31):

IðS;RÞ ¼ �
XSB
i

ks;i
NT

log
ks;i
NT

þ
XRB
j

kr;j
NT

XSB
i

ki;j
NT

log
ki;j
NT

(2)

Here, signals values were assigned to SB bins, and the response values

were assigned to RB bins. By binning all signals and responses, we con-

structed a contingency matrix of which each entry is the number of obser-

vations from the simulated data that correspond to that particular signal-

response pair. NT is the sum over all entries in the table, and ki,j is the num-

ber of instances of signal i that resulted in response j. In this study, 21 signal

bins and 10 response bins were used. Using more response or signal bins

will likely increase the mutual information, so our analysis focuses on com-

parisons of lower bounds of mutual information. The choice of the bins was

based on the assumptions that the lower bound of daylength difference that

the organism needs to detect is �20 min and that the lower bound of the

concentration difference of eS6-P that the organism can detect is �0.3%

of its maximal level. The value of mx (5) was chosen such that there is a

23% coefficient of variation in the light variable, reflecting a moderately

noisy input. The bounds of the response bins were determined by the min-

imal and maximal responses in the absence of the noise. For each signal

value, 200 simulations were performed.
Photoperiod data processing

We obtained a copy of the National Oceanic and Atmospheric Administra-

tion (NOAA) Solar Calculator (https://www.esrl.noaa.gov/gmd/grad/

solcalc/calcdetails.html) and generated approximated day length informa-

tion (i.e., sunlight duration) for a full year for three locations: Oslo, Norway

(59.91 latitude, 110.75 longitude), Praia, Cape Verde (14.92 latitude,

�23.51 longitude), and Boston, Massachusetts (42.35 latitude, �71.05

longitude). For inclusion in our model, we fit a model of day-night variation

to each data set with the following form:

L ¼ aþ b , sin

�
2pd

365
� cp

�
þ sin

�
2pt

T

�
; (3)

where the rightmost sine term represents a base 12-h light/dark cycles, and

the leftmost sine term modulates this average day based on the time of the
year. Here, d is the day of the year, t is the time of day in hours, and T is the

period of the day in hours. The parameters a, b, and c are fit such that the

fraction of daylight (L> 0) conforms to the NOAA estimations for each day

(values for each location are listed in Table S6). With this idealized year-

long data, the time for analysis of daily response is based the natural light

condition rather than any artificially defined time. We also obtained the

measurement of radiation data in the Harvard Forest (32), including down-

ward oriented photosynthetically active radiation (par.down), which we

used as an approximation for daylight. A threshold value (9.0) was used

to define day/night using par.down and was chosen such that it minimized

the average difference between the inferred hours of daylight and NOAA

estimations of day length across all days binned by month. For inclusion

in our model, we smoothed radiation data from 2006 (which had the fewest

missing values) using cubic splines and applied the threshold to generate

binary day/night values.
Identification of genes with time-series
expression profiles similar to eS6-P dynamics

To identify genes that show similar cyclic patterns to eS6-P dynamics under

LD, LL, and CCA1 overexpression conditions, we first selected genes iden-

tified by Dalchau et al. (8) in which the peak expression in a long day was

during the early day (ZT 0–6 h), but the peak expression under LL was dur-

ing subjective night (ZT 18–24 h). There were 126 genes that satisfy these

conditions. We then used the RNA sequencing data fromMissra et al. (mea-

surement under CCA1 overexpression condition) to further filter these

genes. We selected genes that had both peak expression during the day

and a difference between average expression during the day and night of

at least 25% of the peak value under CCA1 overexpression condition. To

visualize the time course profiles of these genes, we used data from Diurnal

Database for LD (28), Edwards et al. for LL (33), and Missra et al. for

CCA1 overexpression (10).

For gene ontology analysis, we used all 92 eS6-P like genes and tested for

enrichment against all A. thaliana genes using PANTHER ((34), available

through http://geneontology.org/). The same procedure was used when

testing all genes identified byDalchau et al. (8). The p-valueswere calculated

using the Fisher’s exact test, andmultiple test correctionwas done usingBen-

jamini-Hochberg method with a false discovery rate threshold of 0.05.

Dalchau et al. classified the genes with cyclic expression patterns into

three categories: light dominant, clock dominant, and coregulated (8). To

examine which category the eS6-P profile would belong to, we used the

same approach to classifying light/clock regulation as Dalchau et al. by

comparing the ratio of eS6-P amplitude driven by the clock (LL) to that

driven by the light-dark cycle. Briefly, amplitude difference between LL

condition and LD condition was used to determine whether light or clock

dominates the regulation of each gene. With our eS6-P data, the amplitude

under the LD condition is higher than that under LL condition by 2.17-fold

(difference in Bode magnitude ¼ �3.3 dB), which categorizes eS6 phos-

phorylation as a process coregulated by light and clock according to the cut-

offs (57 dB difference in Bode magnitude), although light regulation is

favored.
RESULTS

A mechanistic mathematical model characterizes
dynamical features of a feedforward loop
controlling eS6-P

To gain a better understanding of the mechanisms underly-
ing the dynamics of eS6-P, we built a mathematical model
that includes a light-entrained circadian clock and a light-
dependent, clock-independent signaling pathway that regu-
lates the phosphorylation of eS6 (Fig. 1 A). The latter light
Biophysical Journal 119, 1878–1895, November 3, 2020 1881

https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html
https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html
http://geneontology.org/


FIGURE 1 Network structure of the eS6-P regulatory circuit and comparisons between simulations and experiments. (A) Shown is an influence diagram of

a model of the light- and clock-driven feedforward regulatory system that regulates eS6-P (ClockþLight Model). This model consists of two cycling systems:

the light-dark cycle (an oscillatory input) and the circadian clock (an autonomous oscillator). Each cycle regulates cellular processes independently. The

regulation by the light-dark cycle is mediated by the TOR-S6K pathway, and the clock-driven regulation is mediated by transcription factors belonging

to the LHY/CCA1 (C1), EC (C2), PRR9/7 (C3), and PRR5/1 (C4) modules, which contain a repressilator circuit and additional interactions. The light-

dark cycle also regulates the circadian clock via the LHY/CCA1 and PRR9/7 modules (entrainment), thus creating a feedforward circuit. The direction

of regulation is indicated by the shape of arrowhead at the end of each line (triangle arrowhead: activation, flat arrowhead: repression). Note that the ambig-

uous (diamond) regulation of the clock by light reflects that light regulates LHY/CCA1 and PRR9/7 in opposite directions (we assume that light represses

CCA1 stability (49)), which is important to restrict the LHY/CCA1 peak to dawn. The direction of regulation for pink arrows was inferred during optimi-

zation, whereas the direction of regulation for black arrows (i.e., the circadian clock and TOR pathway) were established based on prior knowledge. (B)

Shown are model predictions (black) and experimental observations (red) of eS6-P under wild-type in long days (16:8, LD). Error bars indicate SD of pooled

measurements at various circadian times. Circadian time is relative to dawn, and regions shaded with gray indicate period of darkness. Blue dots show the raw

data points collected before pooling over a period of 84 h (18). (C) Shown are model predictions (black) and experimental observations (red) of eS6-P under

long days (16:8, LD) but with a deficient clock (CCA1 overexpression). Error bars indicate SD of pooled measurements at various circadian times. Time is

measured, and the graph is shaded as in (B). (D) Shown are model predictions (black) and experimental observations (red) of eS6-P under LL. Error bars

(legend continued on next page)

Panchy et al.
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pathway consists of TOR, a kinase that transmits light sig-
nals, and ribosomal S6K, a substrate of TOR (35–38).
S6K has been shown to phosphorylate eS6, and the TOR-
S6K axis is known as a primary pathway for eS6-P in mul-
tiple organisms including plants (17). The clock component
of the model is described by four interacting components
(LHY/CCA1, the EC, PRR9/7, and PRR5/1, denoted as
C1, C2, C3, and C4, respectively in this study). It contains
the core repressilator of the plant circadian circuit and has
previously been used to model the circadian clock (Fig. 1
A; (4,39–41)). We used this model to capture the essential
dynamical features of the clock rather than the molecular
details, so we focused on this four-component core repressi-
lator and neglected the additional feedbacks in the clock (4).
Because we previously observed that eS6-P oscillates under
LL conditions (18), we also considered clock-driven regula-
tion of eS6 phosphorylation and dephosphorylation in our
model (Fig. 1 A). Before parameter estimation, each clock
component in the model was assumed to regulate (activate
or inhibit) the phosphorylation or dephosphorylation of
eS6 with unknown parameters. Because we assumed that
the clock does not receive signals from the clock-indepen-
dent pathway or eS6, we first obtained a parameter set for
the clock component by fitting the clock model using a
qualitative objective function to capture the basic behaviors,
including cyclic variation in response to light-dark
cycles (entrainment) and cycling under LL conditions (see
Methods, Fig. S1). We then compared the simulated clock
gene dynamics to previously published expression data
(28) to ensure that the model properly represents the phase
and shape of the time course measurements (Fig. S2).

Next, we fit the ClockþLight model that contains both
clock-dependent and clock-independent pathways regu-
lating eS6-P to our recent measurement of eS6-P dynamics
under three experimental conditions: a wild-type (WT)
strain under long day (LD, 16-hour light and 8-hour dark)
condition, the wild-type strain under LL condition, and a
clock-deficient strain under LD condition (CCA1 overex-
pression) (18). Using an evolutionary algorithm with a like-
lihood-based objective function, we found optimized
parameter sets that produced trajectories that reasonably
matched the experimental data in all three conditions
(Fig. 1, B–D). Importantly, the model captured the remark-
able dynamical features of eS6-P; light alone drives the up-
regulation of eS6-P during the day (Fig. 1 C), whereas the
clock alone drives the upregulation of eS6-P during the sub-
jective night (Fig. 1 D). Our model also recapitulated the
day peak of the eS6-P when both clock and light-dark cycles
are present, suggesting the dominant role of the light-dark
indicate SD of pooled measurements at various circadian times. Circadian time is

periods of subjective night. eS6-P is shown in a.u. (see Methods). (E) Shown are

wild type under a long day cycle. Clock components are represented by colored c

and green¼ C4 ¼ PRR5/1), and the corresponding eS6-P trajectory is a black cu

go online.
cycle. As we expected from the experimental observation
in Enganti et al. (18), most of the variation in the simulation
occurs between dusk and dawn, coinciding with the reduc-
tion in eS6-P overnight or, in the case of continuous light,
the peak in activity after subjective dawn. Additionally,
the model predicted a peak of eS6-P shortly after dawn
that was not measured experimentally. We found that this
observation was not due to the choice of a particular param-
eter set; the majority of the top 70 (or 5%) models (based on
likelihood) from multiple optimization runs generated the
same behavior (Fig. S3 A). Conversely, the next 70 models
lacked the dawn peak, but those models also lacked oscilla-
tions under LL, suggesting a loss of clock regulation
(Fig. S3 B). Our subsequent analyses are based on the top
performing model, which produced a moderate peak of
eS6-P after dawn.

We next examined how the clock and the light-dark cy-
cles influenced eS6-P mechanistically. Whereas the clock-
independent pathway had an obvious mechanism of action,
in which the light signal activates a cascade of two kinases
that give rise to eS6 phosphorylation, the clock pathway
involved a nontrivial combination of molecular influences.
We found that eS6-P is regulated by multiple clock genes
that peak at different time points during the day (Fig. 1
E). Specifically, although the TOR-S6K pathway directly
drives phosphorylation of eS6 during the full day, LHY/
CCA1 and PRR9/7 both regulated eS6-P during the early
day with different phases of activity (LHY/CCA1 at
dawn and PRR9/7 a few hours after dawn) and opposite ef-
fects on eS6 dephosphorylation (LHY/CCA1 inhibits and
PRR9/7 promotes dephosphorylation). In contrast,
although EC and PRR5/PRR1 also have opposing influ-
ences, their activities largely overlapped and canceled
each other out. These clock influences collectively resulted
in the stably high amount of eS6-P between the early day
and dusk, whereas the early day peak resulted from a coin-
cidence of light, the peak LHY/CCA1 activity, and the
absence of peak PRR9/7 activity (Fig. 1 E). As such, our
model showed that at the steady state under LD, the circa-
dian clock and the light-dark cycle influenced eS6-P in a
generally opposing manner; during the day, eS6-P is pro-
moted by light but inhibited by PRRs, whereas during the
night, the anticipatory rise of LHY/CCA1 promoted eS6-
P before dawn, leading both to rapid early rise and the early
day peak under normal LD conditions and the shift in the
rise into the subjective night under LL. Considering that
the clock’s dynamics are light entrained, the resulting
model behaved as a feedforward loop that is largely inco-
herent at steady state.
measured relative to subjective dawn (ZT), and regions shaded gray indicate

clock element activities (left) and corresponding eS6-P trajectory (right) in

urves (red ¼ C1¼ LHY/CCA1, blue¼ C2¼ EC, orange¼ C3¼ PRR9/7,

rve. Circadian time is measured relative to dawn. To see this figure in color,
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We next asked if these dynamics could explain the differ-
ence between the top parameter sets for our model, which
exhibited an early peak (Fig. S3 A), from those which
lacked both a peak and cycling under LL (Fig. S3 B). We
found that LHY/CCA1 was more strongly inhibitory of
eS6 dephosphorylation in the top 5% of models (uLHY/

CCA1/eS6 ¼ �1.89) than in the next 5% of models (uLHY/

CCA1/eS6 ¼ 2.92. Welch’s t-test, p ¼ 2.26 � 10�5)
(Fig. S5 A), and whereas the influences of PRR9/PRR7 on
eS6-P were not significantly different between groups, the
difference between the effects of LHY/CCA1 and PRR9/7
was more in favor of dephosphorylation (uLHY/CCA1/eS6 �
uPRR9/7/eS6¼�0.63) in the top 5% of models than the next
5% (uLHY/CCA1/eS6 � uPRR9/7/eS6 ¼ 5.22, Welch’s t-test,
p ¼ 1.25 � 10�6) (Fig. S5 B). Furthermore, the steepness of
the sigmoidal function for the dephosphorylation function is
smaller for the top 5% of models (sdephos ¼ 2.13) than the
next 5% of models (sdephos ¼ 5.05, Welch’s t-test, p ¼
9.13 � 10�10) (Fig. S5 C), suggesting activation of dephos-
phorylation is less nonlinear in the top 5% of models than
the next 5% of models. All together, these results show a
correlation between the early day peak behavior observed
in the top 5% of models and the kinetics resulting from
the combination of a strong LHY/CCA1 effect and a gradual
activation of dephosphorylation. Additionally, we found that
among the top 5% of the parameter sets, the top 20 have
both a smaller and narrower range of values for the influence
of LHY/CCA1 on dephosphorylation (uLHY/CCA1/eS6 ¼
�5.90 vs �0.32. Welch’s t-test, p ¼ 8.39 � 10�5), the dif-
ference between influences of LHY/CCA1 and PRR9/7 on
dephosphorylation (uLHY/CCA1/eS6 � uPRR9/7/eS6 ¼
�3.48 vs 0.48. Welch’s t-test, p ¼ 9.60 � 10�4), and steep-
ness of dephosphorylation (sdephos ¼ 1.32 vs 2.44. Welch’s
t-test, p¼ 5.91� 10�4) compared with other parameter sets,
suggesting that best performing models tend to converge to
a similar range of parameters.

In conclusion, our calibrated model captured the observed
dynamics of eS6-P under multiple conditions and allowed
us to make predictions about the mechanisms underlying
these intriguing dynamics. Note that although our discus-
sion primarily focuses on one optimized model, we have
reproduced our key conclusions with distributions of param-
eters rather than a single parameter set (Fig. S3) and with a
much more detailed clock model that includes both mRNA
and protein concentrations (Fig. S4) (4).
Integration of circadian clock and light-sensing
pathways detects and anticipates long daylength
upon transient perturbations of light-dark cycles

We next focused on the dynamics of eS6-P after dawn when
the coincidence of clock and light signals gave rise to a
sharp rise and a peak in the model (Fig. 1, B–D). We hypoth-
esized that at this key time interval, a change in the phase of
the lights-on signal significantly affects the dynamics of the
1884 Biophysical Journal 119, 1878–1895, November 3, 2020
model output because the distinct influences of light and
clock can synergize with each other, depending on their
relative phase. We therefore focused on variations in the
timing of the transition from night-to-day (tND) as they
might be used as proxies for transient changes in the local
environment (such as weather) or long-term seasonal
changes. We ran simulations with the optimized Clockþ
Light model parameters (Fig. 1 E) under the 12-h light
and 12-h dark (12L:12D) condition. After the system
reached steady state (day 0), we varied tND (54 h) at the
start of a single day (day 1) and tracked the trajectories of
eS6-P from the perturbed day and onwards (Fig. 2 A). We
found that the transient variation of tND resulted in signifi-
cant changes in the abundance of eS6-P (response) in the
early day, but the responses converged as the day continued.
In particular, an early night-to-day transition time (tND < 0)
gave rise to a higher response including an early day peak,
as previously observed with the base model under LD con-
dition (Figs. 1 B and 2 B, purple), whereas a late transition
time (tND > 0) had the opposite effect and resulted in a
trough (Fig. 2 B, yellow). In addition, early day maximal
eS6-P (defined as the maximal eS6-P over the 4 h after
dawn) varied by as much as 13.8% relative to the case of
DtND ¼ 0. We found that the early day peaks (transient re-
sponses that are greater than the steady-state response dur-
ing the day) appeared only when the daylength exceeded
12 h (Fig. 2 B, cyan). These results show that the eS6-P con-
trol circuit detected phase variations of the lights-on signal
and thus effectively sensed daylength variation at the begin-
ning of the day.

We found that the sensitivity of eS6-P to changes in the
light-dark cycle was associated with the altered relative
phase of clock gene activities with respect to the dawn
(Fig. 2 C, gray lines) upon perturbations of the light-dark
cycle. For example, the earlier dawn allowed synergy be-
tween light signal, peak of CCA1/LHY, and relatively low
activities of PRR modules to give rise to a strong eS6-P
response (Fig. 2 C). This change of relative phase occurred
despite the influence of the transient phase shift on the clock
gene dynamics as a form of entrainment (Fig. 2 C, upper
panel). Variation in photoperiod length has been previously
shown to affect the absolute phase of circadian genes,
altering both their timing relative to dawn and the intervals
between peak expression of different circadian genes, with
the gap between the CCA1 and LHY compared to PRR9
growing as the photoperiod becomes longer (41,42). Addi-
tionally, with a similar division in peak behavior under
experimental conditions, we found a difference in early
day behavior among parameter sets. The top 5% of models
exhibit a significant variation in peak height (0.027 a.u.,
Fig. S6 A) and trough depth (0.030 a.u., Fig. S6 B) across
a 4-hr variation in DtND compared to the peak (0.001.
Welch’s t-test, p ¼ 8.99 � 10�10) and trough (0.01. Welch’s
t-test, p ¼ 1.24 � 10�6) variation in the next 5% of models.
Furthermore, the top 20 models exhibit a greater magnitude



FIGURE 2 Response of eS6-P to variations of the night-to-day transition time. (A) Shown is a diagram of perturbations of the night-to-day transition and

the effect of daylength relative to a 12-h light 12-h dark (12L:12D) day. The unperturbed (DtND ¼ 0) and perturbed (DtND 5 4 h) days are labeled. The day

period is shown by yellow shaded regions, and the maximum extent of the change in daylength is shown by differential shading. The system reached steady

state before day 0. (B) Shown are trajectories of eS6-P in response to variations of the night-to-day transition time from DtND ¼ �4 (purple) to DtND ¼ 4

(yellow) in 0.5-h increments. All trajectories start at the dusk of the previous day (day 0, unperturbed) and end at the dusk of the current day (day 1, per-

turbed). The yellow line with purple margin shows overlapped trajectories in the absence of light. Thick solid curves show trajectories in the early day (first

4 h after dawn), and thin solid curves show trajectories in the remaining hours of the day. The cyan dots indicate the peak value of eS6-P during the early day,

which tends to increase with more negative shifts in the night-to-day transition (DtND < 0). Short line segments at the bottom show the time of dawn for each

(legend continued on next page)
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of early day variation in both the peak (0.061 a.u.) and
trough (0.044) than the rest of the top 5% (peak ¼ 0.14,
p¼ 2.73� 10�6; trough¼ 0.025, p¼ 2.10� 10�2; Welch’s
t-test), indicating that the best performance with respect to
our experimental data coincides with the greatest sensitivity
to variation in daylength. These results suggest that the
circadian clock plays an essential role in the regulation of
eS6-P, particularly with regard to its early day dynamics.

We therefore asked whether the circadian clock is
required for the eS6-P circuit (Fig. 1 E, ClockþLight
model) to detect long daylength with an early day peak.
To this end, we constructed three alternative models that
describe various modes in which eS6-P may respond to
the light signal in the absence of the clock (Fig. 3 A, see
Table S2 for parameters). These models are 1) a linear cir-
cuit that transmits light signals to eS6-P (Fig. 3 A, top
panel), 2) an IFFL that produces an early day peak similar
to what the ClockþLight model does under LD condition
(Fig. 3, A and B, middle panels), and 3) a coherent feedfor-
ward loop that allows a slow decline of eS6-P upon the with-
drawal of light signals (Fig. 3 A, lower panel). Note that
none of these three models were able to fully fit the observed
data (e.g., Fig. 1 D) because of the lack of clock regulation.
Rather than evaluating these models in terms of their fit to
data, we focused on their performance in terms of detecting
daylength variations upon dawn.

Each of the three alternative models generated a constant
level of eS6-P upon the perturbations of daylength (Fig. 3 B,
cyan). Particularly, the early day peak produced by the IFFL
model did not distinguish short and long daylengths (Fig. 3
B, middle). This insensitivity to daylength variations with
the alternative models was reflected in the stable maximal
early responses of eS6-P regardless of their ratios to steady
state (or end-of-day) eS6-P levels (Fig. 3 C, left). With
parameter values randomly chosen from a defined range,
we confirmed that the difference between the LightþClock
model and the alternative models were not due to the choice
of particular parameter sets (Fig. S7). In addition, we found
that the daylength-sensitive early response with the Clockþ
Light model was anticorrelated with the time for eS6-P to
reach its steady-state level, e.g., an early dawn accelerated
the response of eS6-P (Fig. 3 C, right). These results suggest
that detection of long daylength with early day peaks is a
feature that requires the integration of the circadian clock
and the clock-independent light-sensing pathway.

Because realistic perturbations of daylength may occur
through changes of light conditions at both dusk and dawn
and on multiple days, we next considered the effects of mul-
tiple variations in our simulations. We examined 52 h of
variation in tND, then 52 h of variation in the day-to-night
trajectory. (C) Shown are side-by-side plots of clock perturbations in response

simplicity, we only show the DtND ¼ �4 (purple), DtND ¼ 0 (red), and DtND ¼
(red ¼ C1 ¼ LHY/CCA1, blue ¼ C2 ¼ EC, orange ¼ C3 ¼ PRR9/7, and gre

all panels, Circadian time is shown in hours relative to normal time of dawn (i.
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transition (tDN) during dusk the previous day, and finally,
combined 52 h of variation in tND followed by 52 h of
variation in the day-to-night transition tDN (tDN-tND)
(Fig. 4 A). Perturbations in each tDN-tND pair acted in the
same direction to either lengthen or shorten the intervening
night (Fig. 4, A and B, vertical lines). With the ClockþLight
model, we found that consecutive changes in dusk and dawn
(tDN-tND) timing gave rise to significant variability in eS6-P
response, similar to what was obtained with 54 h of tND
alone, whereas changes to only dusk or dawn had a limited
effect on eS6-P response, as previously seen for tND pertur-
bations of 52 h (Figs. 2 B and 4, B and C). Interestingly,
although 52 h perturbations of tND or tDN alone did not
generate a significant early day peak, the change in peak
metric (early day peak height over steady-state eS6-P mea-
sure at the end of the day) was similar regardless of whether
the shift occurred at dusk the previous day (Fig. 4 C, gray)
or dawn of the current day (Fig. 4 C, red). Together, these
results suggest that eS6-P is sensitive to daylength, not
just the timing of dawn, and that changes in the timing of
dusk can be integrated into the eS6-P response by the
ClockþLight circuit after dawn and serve as a predicting
factor for the current daylength. The incorporation of infor-
mation in the previous day shows that the ClockþLight cir-
cuit can anticipate the daylength changes with a memory
capacity.

We next examined the effect of changes to tND on two
consecutive days. We observed a slightly increased dynamic
range of early eS6-P peak on the second early day compared
with the first day with the ClockþLight model (Fig. S8).
These results indicate that the ClockþLight circuit was
able to detect changes in daylength beyond the altered
timing of the current dawn.
Integration of circadian clock and light-sensing
pathway detects gradual variations of light-dark
cycles

We next asked whether the eS6-P circuit responds to pro-
gressive, long-term variations of the light-dark cycle, reflec-
tive of seasonal changes in the cycle throughout a year. We
used a Solar Calculator provided by the NOAA to generate a
data set of ‘‘ideal’’ (i.e., unaffected by transient local
changes) daylengths over the course of a year. We simulated
the ClockþLight model based on these light-dark cycles for
1 year at two locations representing the extreme latitudes of
the A. thaliana distribution: Oslo, Norway, and Praia, Cape
Verde (43). As expected from the analysis of transient
changes in dawn timing, our model showed a sensitivity
of eS6-P to changes in daylength over the year (Fig. 5).
to varying night to day transition and the resulting effects on eS6-P. For

4 (yellow) in the first panel. In other panels, color indicates clock factor

en ¼ C4 ¼ PRR5/1). Gray vertical lines show the timing of the dawn. In

e., 50 h). To see this figure in color, go online.



FIGURE 3 Response of alternative models of eS6-P circuit to variations of the night-to-day transition time. (A) Shown are influence diagrams of the three

alternative models of eS6-P circuit. In each diagram, the regulatory factors are indicated by the lettered black circles, and regulatory interactions are denoted

by colored lines (blue ¼ activation, red ¼ repression). Right panels show simulation trajectories with these models under the LD condition. Gray regions

show the period of night. (B) Shown are trajectories of eS6-P in response to variations of the night-to-day transition time from DtND¼�4 (purple) toDtND¼
4 (yellow) in 0.5-h increments. All trajectories start at the dusk of the previous day (day 0, unperturbed) and end at the dusk of the current day (day 1, per-

turbed). Yellow line with purple margin shows overlapped trajectories in the absence of light. Thick solid curves show trajectories in the early day (first 4 h

after dawn), and thin solid curves show trajectories in the remaining hours of the day. The cyan dots indicate the peak value of eS6-P during the early day in

each alternative model, which unlike the ClockþLight model (see Fig. 2 B), is unaffected by the change in night-to-day transition. Short line segments at the

bottom show the time of dawn for each trajectory. (C) Left: peak metric (ratio of the early day maximum of eS6-P to the eS6-P levels at the dusk) with respect

(legend continued on next page)
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FIGURE 4 Response of eS6-P to variations in night-to-day transition time following changes of day-to-night transition time the previous dusk. (A) Shown

is a diagram of perturbations of the day-to-night transition and the night-to-day transition on two consecutive days. The first (perturbed at dusk,DtND¼52 h)

and second days (perturbed at dawn, DtND ¼52 h) are labeled. The day period with light is shown by yellow shaded regions, and the maximal extent of the

change in daylength is shown by differential shading. (B) Trajectories of eS6-P in response to variations of the day-to-night transition time and/or the night-to-

day transition time from DtND ¼ �2 and DtDN ¼ 2 (purple) to DtND ¼ 2 and DtDN ¼ �2 (yellow) in 0.25-h increments. Short line segments at the bottom

show the time of dawn or dusk for each trajectory. Upper: dawn perturbation only is shown. Middle: dusk perturbation only is shown. Bottom: both pertur-

bations are shown. (C) Shown is the peak metric (ratio of the early day (day 1) maximum of eS6-P to the eS6-P levels at the dusk) with respect to the

perturbations of the daylength under various perturbation scenarios. This comparison demonstrates that the combining effect of small (<2 h) DtND and

DtDN perturbations and achieves a similar response in early day peak weight as a much larger (>2 h) perturbation of DtDN. To see this figure in color,

go online.
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The range of eS6-P was correlated with the degree of vari-
ation in daylength, which was broader in Oslo (6.2–19.0 h,
Fig. 5 A) compared with Praia (11.3–13.0 h, Fig. 5 B). We
to the perturbations of the daylength is shown. We use this metric to compare

steady-state levels of eS6-P after the early day. A large peak metric indicates a g

whereas a greater change in peak metric indicates greater sensitivity in peak hei

with respect to the perturbations of the daylength is shown. Activation time is de

level at the dawn, and xs is the eS6-P level at the dusk. Activation time is a measu

smaller values indicating a faster response and greater change in activation time i

figure in color, go online.
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observed variations in both the early day maximal and early
day minimal levels of eS6-P in Oslo (Fig. 5 A, orange and
pink), with the early day maxima increasing dramatically
the change in peak height across model as different models have different

reater peak of eS6-P during the early day relative to the steady-state level,

ght to changes in daylength. Right: activation time of the eS6-P after dawn

fined as the time for eS6-P to reach x0 þ 0.9(xs � x0), where x0 is the eS6-P

re of how quickly eS6-P growth responds to the day-to-night changes, with

ndicating greater sensitivity in response to changes in daylength. To see this



FIGURE 5 Simulated amounts of eS6-P in response to seasonal changes in daylength over a year. (A) Shown is a simulation of eS6-P over a full year using

daylength data for Oslo, Norway (the NOAA Solar Calculator). The left figure shows the eS6-P time course over the full year (gray), overlaid with the early

day maximum (green), early day minimum (pink), and daily steady-state (end-of-day or dusk) levels (black). Peak metric (orange) is defined as the ratio of

early day maximum to the daily steady-state level. The right figure shows the eS6-P profiles of individual days selected every 2 weeks from day 7 to day 175

of the year. Time 0 is the actual dawn of each day. The color of each curve corresponds to the week number and is correlated with the daylength from short

(yellow) to long (purple). Triangles indicate the time at which the end-of-day eS6-P level was measured, and blue dots indicate the position of the early day

peak. (B) Shown is a simulation of eS6-P across a full year using daylength data for Praia, Cape Verde (the NOAA Solar Calculator). Upper and lower figures

are as described in (A). The globe on the left of each panel shows the latitude of the position that the daylength was simulated for. To see this figure in color,

go online.
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as daylength approached its yearly maximum in the sum-
mer. Starting from day 89 of the year, the early day maxima
increased until it reached 148% of the daily steady state at
day 170. As such, we conclude that changes in the daylength
over a year are able to the variations in the early day peak of
eS6-P, with the early day maxima exceeding the daily
steady-state level around 13.5 h of light. In contrast, much
smaller variations of the early day eS6-P, which never ex-
ceeded the daily steady-state levels, were observed with
the yearly light-dark cycle data in Praia (Fig. 5 B), which
has a maximal daylength of 13.0 h. We also observed differ-
ences in variation between the top 5% and next 5% of
models in line with previous observations. The variation in
the peak height of eS6-P over the year in Oslo is an order
of magnitude greater on average in the top 5% of models
versus the next 5% (0.06 vs 0.006 a.u. Welch’s t-test, p ¼
1.92 � 10�16) and twice as large for the top 20 compared
to the rest of the top 5% (0.094 vs 0.047. Welch’s t-test,
p ¼ 9.59 � 10�6) (Fig. S9 A). In terms of simulations
over the full year for Oslo, both the top and next 5% of
model exhibit variation in the minimal daily eS6-P value
over the year (blue), but only the top 5% exhibited variation
Biophysical Journal 119, 1878–1895, November 3, 2020 1889
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in the maximum of eS6-P in more than a few models
(Fig. S9 B). Overall, these results indicate that the eS6-P cir-
cuit can detect seasonal changes of the light-dark cycles by
varying the magnitude of the responses after the dawn and
thus is sensitive to changes in daylength even when they
occur gradually. Furthermore, the analysis of this behavior
across parameter sets suggest that the unique cycling prop-
erties of this circuit and its daylength sensitivity results from
parameter values that ensure that the response of dephos-
phorylation is slow and largely repressed by LHY/CCA1
expression during the early day.

We next asked whether the eS6-P circuit can detect
changes in light-dark cycles because of transient changes
(such as weather) as well as seasonal changes. We obtained
a year-long environmental radiometry data from Harvard
Forest (32). We normalized the measurement of downward
photosynthetic radiation based on the ideal daylength calcu-
lations for Boston, Massachusetts from NOAA and obtained
a time series data of realistic light-dark cycles over a year
(see Methods). Briefly, a threshold value was used to define
day/night with the Harvard Forest data, and the value was
chosen to minimize the mean difference between the in-
ferred hours of daylight and NOAA estimations of day-
length. We compared the simulation results for idealized
and observed daylength data (Fig. 6) With the idealized day-
lengths in Boston (9.4–15.4 h), we observed moderate early
day peaks in the middle of the year (Fig. 6 A). However,
transient changes in the observed light data resulted in
changes in daylength of up to 1.5 h, which in turn gave
rise to significant variation of early day peak of eS6-P in
response to the changes of sunlight because of daily weather
in addition to seasonal changes of sunlight (Fig. 6 B).
Although transient changes mainly reduced the daylengths
from the idealized day lengths throughout the year, there
is a significant difference in terms of peak metric between
longer (>13 h) and shorter (<13 h) days based on the real-
istic sunlight data (1.01 vs 0.96. Welch’s t-test, p ¼ 2.7 �
10�34). Furthermore, the absolute difference in early day
peak between idealized and realistic days was greater during
longer days (>13 h) than during shorter days (<13 h) by 10-
fold (Welch’s t-test, p ¼ 7.5 � 10�32). As such, these
weather induced changes primarily exist in long days, dur-
ing which the early response of eS6-P is most sensitive to
daylength changes. To further illustrate this point, we
compared in simulated early day peaks between idealized
and realistic days; in both simulations, the peak to steady-
state ratio remained low during short days and increased
around a daylength of 13 h, but the ratios of the two simu-
lations diverged as days grew longer (Fig. 6 C). Together,
these results show that the eS6-P circuit can detect varia-
tions in light-dark cycles when both seasonal and local, tran-
sient (weather) changes are considered.

The sensitivity of early eS6-P responses to daylength var-
iations raises a question whether this detection of daylength
variation is robust with respect to fluctuations of light con-
1890 Biophysical Journal 119, 1878–1895, November 3, 2020
ditions, because of for example temporary shading by taller
plants, and fluctuations in molecular concentrations. We
therefore introduced high frequency white noise to the vari-
ables describing either the amount of transmitted light or
eS6-P itself. We used mutual information to quantify the
signal transmitted from varied daylength to the early eS6-
P response. We found that more than 50% of the mutual in-
formation (compared to the noise-free condition with a finite
number of bins) was retained (>1 bit) in the presence of sig-
nificant fluctuations of light or eS6-P (amplitude parameter
m ¼ 5 or �23% coefficient of variation in light signal)
(Fig. S10). This result suggests that the system is robust
with respect to the rapid fluctuations of light or molecular
concentrations while it maintains its capacity to detect day-
length variations. Intuitively, the peak of eS6-P in long days
is driven by a clock-based, slowly increasing trajectory
starting from night, and this slow dynamics serves as a
signal integration, or averaging method, to reduce the effect
of high frequency noise.
Dynamical features of the eS6-P circuit represent
expression profiles of a large number of genes

Because many genes in A. thaliana are coregulated by the
circadian clock and light-dark cycles, we hypothesized
that the dynamic features of eS6-P can be observed in the
expression patterns of other genes. To identify genes whose
expression may resemble the profile of eS6-P, we reanalyzed
an A. thaliana cyclic gene expression data set reported by
Dalchau et al. (8), which is based on previously published
microarray data with expression patterns of A. thaliana
genes under LD and LL conditions (6,33,44). By calculating
the phase shift of the peak expression between measure-
ments under LD and LL conditions, we identified 126 genes
in which peak expression appears in the early day under LD
(0–6 h after dawn) and regressed into the night under LL
condition (18–24 h after dawn), emulating the clock-driven
sensitivity that we observed in our eS6-P model and the un-
derlying experimental data (see Methods). We next reana-
lyzed our previously published RNA sequencing data for
A. thaliana genes under clock-deficient condition (CCA1
overexpression) (10) and further refined the list of 126 genes
by selecting those that have peak expression during the day
and have significantly higher expression during the day than
during the night under the clock-deficient condition (see
Methods). With these selection criteria based on the two
data sets (Dalchau et al. and Missra et al. (8,10)), we have
identified 92 genes of which time course expression profiles
are similar to that of eS6-P (Table S3). As expected, genes
identified in this manner exhibited expression patterns qual-
itatively similar to eS6-P dynamics (Fig. 7).

Dalchau et al. (8) classified genes with cyclic expression
patterns into three categories based on whether the clock or
the light-dark cycle dominates the amplitude of the oscilla-
tion in mRNA levels: clock dominant, light dominant, and



FIGURE 6 Simulated amounts of eS6-P in response to transient and seasonal changes in daylength over a year. (A) Shown is a simulation of eS6-P across a

full year using daylength data for Boston, Massachusetts (the NOAA Solar Calculator). The left figure shows the eS6-P time course over the full year (gray),

overlaid with the early day maximum (green), early day minimum (pink), and daily steady-state (end-of-day or dusk) levels (black). Peak metric (orange) is

defined as the ratio of early day maximum to the daily steady-state level. The right figure shows the eS6-P profiles of individual days selected every 2 weeks

from day 7 to day 175 of the year. Time 0 is the actual dawn of each day. The color of each curve corresponds to the week number and is correlated with the

daylength from short (yellow) to long (purple). Triangles indicate the time at which the end-of-day eS6-P level was measured, and blue dots indicate the

position of the early day peak. (B) Shown is a simulation of eS6-P over a year using the full year daylength data derived from Harvard Forest radiometry

data (26). The eS6-P time course over the full year (gray) is overlaid with the early day maximum (green), early day minimum (pink), and daily steady-state

(end-of-day or dusk) levels (black). Peak metric (orange) is defined as the ratio of early day maximum to the daily steady-state level. (C) The average peak

metric (ratio of the early day maximum of eS6-P to the eS6-P levels at the dusk) for NOAA (open circle) and Harvard Forest (closed circle) days were binned

according to their realistic daylength (every half hour from 8 to 15 h). Error bars indicate the SD of Harvard Forest days in each bin. The color of the points

and bars is correlated with daylength from short (yellow) to long (purple). The globe on the left shows the latitude of the position that the daylength was

simulated for. To see this figure in color, go online.
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coregulated. Note that all three types of genes can be influ-
enced by both the clock and the light-dark cycles, and the
category ‘‘coregulated’’ here has a more stringent definition
in terms of the amplitudes (see Methods). Not surprisingly,
the time course profile of eS6-P is categorized as ‘‘coregu-
lated’’ based on the definition of Dalchau et al. (see
Methods). We found that out of the 92 eS6-P-like genes,
66 are classified as ‘‘clock dominant,’’ whereas 25 are ‘‘cor-
egulated,’’ and only 1 is ‘‘light-dominant,’’ suggesting the
clock plays a prime role in generating this pattern of
expression.

We next performed gene ontology enrichment analysis
with the 92 eS6-P like genes using the set of all annotated
genes in A. thaliana as a background. We found that eS6-
P-like genes are enriched for light response, photosynthetic
regulation, and chloroplast localization, as expected from
Biophysical Journal 119, 1878–1895, November 3, 2020 1891



FIGURE 7 Genes in A. thaliana with eS6-P-like expression patterns. (A) Shown is the distribution of the peak phase shift between LD and LL conditions

for 92 genes for which phases of expression profiles are similar to those of eS6-P (blue). Equivalent phase shifts for all cyclic genes in the list generated by

Dalchau et al. (8) are in gray. (B–D) Shown are the mRNA expression patterns of 92 genes with phases of expression profiles similar to those of eS6-P for

wildtype under LD (B), wildtype under LL (C), and CCA1 overexpression under LD (D) conditions. Time course expression profiles of individual genes are

shown as colored curves, whereas the solid black line shows the average expression of all 92 genes. The dotted black line is the average expression pattern of

all cyclic genes in the list generated by Dalchau et al. (8). Expression values in all panels were normalized from 0 to 1, such that 0 corresponds to the min-

imum, and 1 corresponds to the maximum for each individual gene. (E) Shown are the distributions of the difference in average mRNA expression level

between day and night of 92 eS6-P-like genes (blue) and all cyclic genes in the list generated by Dalchau et al. (8) (gray) under CCA1 overexpression con-

dition. Positive values indicate greater average expression during the day, and negative values indicate greater average expression during the night. To see this

figure in color, go online.
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their responsiveness to light (Table S4). Many of the same
biological process and cellular compartment terms are
also enriched among the set of all genes that show cyclic
1892 Biophysical Journal 119, 1878–1895, November 3, 2020
expression patterns (Table S5). However, the enrichment
of specific molecular functions regarding memebrane trans-
port (zinc, ferrous iron, and protons) and activities (ATPPase
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and thioredoxin-disulfide reductase) is unique to eS6-like
genes, suggesting they represent a more specialized subset
of the light clock-regulated genes. Overall, this suggests
that eS6-P-like behavior, a photoperiod-sensitive shift in
peak activity around dawn, is associated with specific
light-dependent metabolic functions.

These results suggest that the dynamics of eS6-P may
represent a broad range of transcriptional, post-transcrip-
tional, and post-translational activities in A. thaliana, partic-
ularly in association with light-driven and responsive
metabolic functions. Although eS6-P is coregulated by
both the light and clock, the phase variation in our model
is driven by the clock, and this is consistent with the obser-
vation that this pattern is associated with many clock-domi-
nant genes. The similarity of dynamical features among
these cellular activities does not indicate a causal relation-
ship, but it raises the possibility that the daylength detection
and anticipation features of such dynamics may be used by a
large system of molecules in A. thaliana. This suggests that
the cyclic phosphorylation of eS6 may serve as a key
signaling factor or an effector integrating ribosomes into
this detection and anticipation system.
DISCUSSION

Robustness and sensitivity of the clock with
respect to light conditions

In this study, we built a mathematical model that describes
the dynamics of eS6-P, a ribosomal post-translational modi-
fication that occurs in many eukaryotic species. A feedfor-
ward regulatory loop connects light signals to eS6-P
through a clock-dependent pathway and a clock-independent
pathway. We found that the response of eS6-P is sensitive to
the changes of the light-dark cycles, e.g., the daylength var-
iations that are reflected in the time of the dawn. The circuit
therefore enables cells to detect and anticipate such varia-
tions that may result from changes in season and/or transient
changes inweather.We showed that the circadian clock plays
important roles in this information processing function. This
feature is different from the well-known function of the
clock, which ensures robust anticipation of light-dark cycles
even under fluctuating light conditions (45,46). Our study
shows that the clock can be used to robustly detect the varia-
tions of light conditions at the beginning of a day, which is a
function in addition to its traditional role in generating stable
rhythmic cues that counteract environmental fluctuations.
The circuit achieves this because light and clock signals syn-
ergizewith each other only at the early phase of the light-dark
cycles. This property of the circuit adds to the remarkably
diverse ways that the clock may be used by organisms.
Furthermore, it might be a fitness advantage for plants to sta-
bilize one group of molecular activities with the clock while
making other activities sensitive to the light conditions using
the clock as a reference.
Physiological functions of external coincidence

Although the sensitivity of eS6-P to light around dawn has
not been investigated comprehensively, experimental data
showed that eS6-P rises quickly in response to light
(18,37) as anticipated by our model. The general dynamical
feature of eS6-P as a result of clock-light signal integration
is consistent with other known signaling events in which the
coincidence of internal, clock-derived signals and external
light signals drives prominent peaks of molecular activities
in plants (8,9,47). For example, according to the classic
‘‘external coincidence’’ mechanism for photoperiodic (sea-
sonal) flowering, the clock drives up the expression of the
regulator of flowering, CO, late in the day. In long day
plants, if CO happens to be exposed to light late in the
day, CO is activated and triggers flowering, whereas if CO
is met by darkness, as is the case in the winter, flowering re-
mains suppressed (9). Thus, the external coincidence model
allows plants to detect variation in photoperiod at the end of
the day. Our work suggests another implementation of
external coincidence, in which variation in light conditions
is detected at the beginning of the day by sensing photope-
riod sensitive shifts in the phase of circadian genes (41,42).
For CO at the end of the day, coincidence of clock and light
signals activates CO, whereas darkness is incoherent with
the clock and represses CO. For comparison, according to
our model, eS6-P is most sensitive to changes in light con-
ditions at the beginning of the light period because the nega-
tive effect of the clock and the potentially positive effect of
light are incoherent. We propose that eS6-P helps the plant
to sense variation in the onset of light as a result of cloud
cover or shading by other objects in the morning and adjust
its physiology accordingly.
Versatile performance objectives of feedforward
loops

Previous studies have demonstrated multiple functions of
feedforward loops in terms of systems dynamics, including
accelerating responses, fold-change detection, adaptation to
constant signals, and filtering noise (48–51). In addition, it
was shown that a feedforward loop can perform a ‘‘count-
ing’’ function that transforms oscillatory input to stable sig-
nals (52). Our study shows a previously underappreciated
function of a particular type of feedforward loop containing
an intrinsic autonomous oscillator. This system not only de-
tects the phase and period variations of the oscillatory inputs
by combining the signals from the external and internal os-
cillations but also memorizes the altered response in the
following cycles, which may serve to anticipate additional
perturbations. The latter feature may be useful for plants
to predict weather through encoding the information in the
light conditions of the previous day. This result further dem-
onstrates the versatility of the functions of the feedforward
loop. Future work is needed to determine whether this
Biophysical Journal 119, 1878–1895, November 3, 2020 1893
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phase-detection mechanism can be integrated with other
known functions of feedforward loops.
Anticipation of changes in environmental
conditions

Phosphorylation of eS6 occurs in all organisms in which it
has been examined, including yeast, plants, and humans
(12–14). A previous study showed dramatically increased
translation activity in mammalian cells with a phosphoryla-
tion-deficient eS6, suggesting a possible role of eS6-P in
controlling general resource allocation in cells (15). If this
potential function of eS6-P were conserved across king-
doms, then our work would further suggest that eS6-P might
tune some aspect of protein synthesis in response to variable
light condition. This function, although still to be demon-
strated in plants, would not be far-fetched given that trans-
lation requires a substantial input in cellular energy, which
may be depleted at the end of night. This detection and
anticipation of daylength may help plants to prepare for
days with particular patterns of light exposures. It has
been shown that growing yeast cells can allocate resources
to anticipate favorable or unfavorable environmental condi-
tions, and the choice of these anticipations may be made
with rhythmic dynamics (53,54). Regardless of the specific
cellular functions of eS6-P, our work sheds light on the rich
dynamics of eS6-P under fluctuating environmental condi-
tions. Moreover, the remarkable information processing
characteristic of the signaling circuit that controls eS6-P
has the capacity to detect and memorize critical cues to
allow plants to adapt to a dynamical light environment.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2020.09.025.
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Supplemental Text 

The model of es6 phosphorylation is described by the following equations: 

𝑑𝑋𝐿𝐻𝑌,𝐶𝐶𝐴1

𝑑𝑡
= 𝛾𝐿𝐻𝑌,𝐶𝐶𝐴1 (𝐹 (𝜎𝐿𝐻𝑌,𝐶𝐶𝐴1(ω𝐿𝐻𝑌,𝐶𝐶𝐴1

0 + ω𝑃𝑅𝑅9,7→𝐿𝐻𝑌,𝐶𝐶𝐴1𝑃𝑅𝑅9,7 +  ω𝑃𝑅𝑅5,1→𝐿𝐻𝑌,𝐶𝐶𝐴1𝑃𝑅𝑅5,1 + ω𝐿𝑖𝑔ℎ𝑡→𝐿𝐻𝑌,𝐶𝐶𝐴1𝐿𝑖𝑔ℎ𝑡)) −

𝑋𝐿𝐻𝑌,𝐶𝐶𝐴1)            (1) 

𝑑𝑋𝐸𝐶

𝑑𝑡
= 𝛾𝐸𝐶 (𝐹 (𝜎𝐸𝐶(ω𝐸𝐶

0 + ω𝐿𝐻𝑌,𝐶𝐶𝐴1→𝐸𝐶𝐿𝐻𝑌, 𝐶𝐶𝐴1 + ω𝑃𝑅𝑅5,1→𝐸𝐶𝑃𝑅𝑅5,1 + ω𝐸𝐶→𝐸𝐶𝐸𝐶)) − 𝑋𝐸𝐶)   (2) 

𝑑𝑋𝑃𝑅𝑅9,7

𝑑𝑡
= 𝛾𝑃𝑅𝑅9,7 (𝐹 (𝜎𝑃𝑅𝑅9,7 (ω𝑃𝑅𝑅9,7 

0 + ω𝐿𝐻𝑌,𝐶𝐶𝐴1→𝑃𝑅𝑅9,7 𝐿𝐻𝑌, 𝐶𝐶𝐴1 +  ω𝑃𝑅𝑅5,1→𝑃𝑅𝑅9,7 𝑃𝑅𝑅5,1 +  ω𝐸𝐶→𝑃𝑅𝑅9,7 𝐸𝐶 +

 ω𝐿𝑖𝑔ℎ𝑡→𝑃𝑅𝑅9,7𝐿𝑖𝑔ℎ𝑡)) − 𝑋𝑃𝑅𝑅9,7)         (3) 

𝑑𝑋𝑃𝑅𝑅5,1

𝑑𝑡
= 𝛾𝑃𝑅𝑅5,1(𝐹(𝜎𝑃𝑅𝑅5,1 (ω𝑃𝑅𝑅5,1 

0 + ω𝐿𝐻𝑌,𝐶𝐶𝐴1→𝑃𝑅𝑅5,1 𝐿𝐻𝑌, 𝐶𝐶𝐴1 +  ω𝑃𝑅𝑅5,1→𝑃𝑅𝑅5,1 𝑃𝑅𝑅5,1 )) − 𝑋𝑃𝑅𝑅5,1)  

 (4) 

𝑑𝑋𝑇𝑂𝑅

𝑑𝑡
= 𝛾𝑇𝑂𝑅1(𝐹(𝜎𝑇𝑂𝑅 (ω𝑇𝑂𝑅 

0 + ω𝐿𝑖𝑔ℎ𝑡→𝑇𝑂𝑅1 𝐿𝑖𝑔ℎ𝑡)) − 𝑋𝑇𝑂𝑅)       (5) 

𝑑𝑋𝑆6𝐾

𝑑𝑡
= 𝛾𝑇𝑂𝑅1(𝐹(𝜎𝑆6𝐾 (ω𝑆6𝐾 

0 + ω𝑇𝑂𝑅1→𝑆6𝐾 𝑇𝑂𝑅1)) − 𝑋𝑆6𝐾)       (6) 

𝑑𝑋𝑒𝑆6𝑃

𝑑𝑡
= 𝛾𝑒𝑆6𝑃(𝐹(𝜎𝑝ℎ𝑜𝑠 (ω𝑝ℎ𝑜𝑠 

0 + ω𝑆6𝐾→𝑒𝑆6𝑃𝑆6𝐾) )(1 − 𝑋𝑒𝑆6𝑃) − 𝐹(𝜎𝑑𝑒𝑝ℎ𝑜𝑠  (ω𝑑𝑒𝑝ℎ𝑜𝑠  
0 + ω𝐿𝐻𝑌,𝐶𝐶𝐴1→𝑒𝑆6𝑃 𝐿𝐻𝑌, 𝐶𝐶𝐴1 + ω𝐸𝐶→𝑒𝑆6𝑃 𝐸𝐶 +

ω𝑃𝑅𝑅9,7→𝑒𝑆6𝑃 𝑃𝑅𝑅9,7 + ω𝑃𝑅𝑅5,1→𝑒𝑆6𝑃 𝑃𝑅𝑅5,1))(𝑋𝑒𝑆6𝑃))       (7) 

Where 𝑋𝑖 is the activity of the species 𝑖 in arbitrary units, phos and dephos refer to the phosphorylation 

and dephosphorylation of es6 respectively, and F is the sigmoidal function described by: 

𝐹(𝜎𝑊) =
1

(1+𝑒−𝜎𝑊)
           (8) 

Additionally, Light refers to the day/night of the of model such that Light = 1 during the day and Light = 0 

during the night. The day/night cycle was tracked using the following equation: 

{
𝐴 +  sin(

2𝜋𝑡

𝑇
) > 0, 𝐿𝑖𝑔ℎ𝑡 = 1 

𝐴 +  sin(
2𝜋𝑡

𝑇
) ≤ 0, 𝐿𝑖𝑔ℎ𝑡 = 0

          (9) 

Where t is the current time, T is the period of one full day (9.5 units), and A is used to scale the number 

of hours spent in day and night during the day/night cycle (0 for a 12/12 normal day, 0.5 for 16/8 long 

day) 

Note: LHY/CCA1 and similar components names are rendered as LHY,CCA1 in the above equations to 

avoid the automatic formatting of ‘/’ as a division operator 

  



Table S1. Parameter values of the Clock+Light model 

Parameter Description Values 

γLHY/CCA1 Timescale of LHY/CCA1 0.87 

σLHY/CCA1 Steepness of sigmoidal function of LHY/CCA1 2.57 

ω0
LHY/CCA1 Basal production rate of LHY/CCA1 8.27 

ω PRR9/7→LHY/CCA1 Activation/inhibition strength of PRR9/7 on LHY/CCA1 -9.90 

ω PRR5/1→LHY/CCA1 Activation/inhibition strength of PRR5/1 on LHY/CCA1 -5.05 

ω,Light →LHY/CCA1 Activation/inhibition strength of Light on LHY/CCA1 -1.15 

γPRR9/7 Timescale of PRR9/7 0.22 

σPRR9/7 Steepness of sigmoidal function of PRR9/7 6.06 

ω0
PRR9/7 Basal production rate of PRR9/7 1.58 

ωLHY/CCA1→PRR9/7 Activation/inhibition strength of LHY/CCA1 on PRR9/7 4.47 

ωPRR5/1→PRR9/7 Activation/inhibition strength of PRR5/1 on PRR9/7 -1.56 

ωEC→PRR9/7 Activation/inhibition strength of EC on PRR9/7 -9.88 

ω,Light →PRR9/7 Activation/inhibition strength of Light on PRR9/7 1.53 

γPR5/1 Timescale of PRR5/1 3.74 

σPRR5/1 Steepness of sigmoidal function of PRR5/1 9.86 

ω0
PRR9/7 Basal production rate of PRR5/1 7.35 

ω LHY/CCA1→PRR5/1 Activation/inhibition strength of LHY/CCA1 on PRR5/1 -10.00 

ω PRR5/1→PRR5/1 Activation/inhibition strength of PRR5/1 on PRR5/1 -7.59 

γEC Timescale of EC 9.79 

σEC Steepness of sigmoidal function of EC 4.06 

ω0
EC Basal production rate of EC 7.12 

ωLHY/CCA1→EC Activation/inhibition strength of LHY/CCA1 on EC -9.68 

ω PRR5/1→EC Activation/inhibition strength of PRR5/1 on EC -5.08 

ωEC→EC Activation/inhibition strength of EC on EC -0.73 

γS6K Timescale of S6K 2.54 

σS6K Steepness of sigmoidal function of S6K 4.43 

ω0
S6K Basal production rate of S6K -1.23 

ωTOR→S6K Activation/inhibition strength of TOR on S6K 3.89 

γTOR Timescale of TOR 1.11 

σTOR Steepness of sigmoidal function of TOR 1.00 

ω0
TOR Basal production rate of TOR -2.62 

ωLight→TOR Activation/inhibition strength of Light on TOR 7.70 

γeS6P Timescale of eS6 5.26 

σphos Steepness of sigmoidal function of eS6 phosphorylation 1.09 

σdephos Steepness of sigmoidal function of eS6 
dephosphorylation 

1.55 

ω0
phos Basal production rate of eS6 phosphorylation -2.28 

ω0
dephos Basal production rate of eS6 dephosphorylation 6.52 

ωS6K →eS6 Activation/inhibition strength of S6K on eS6 
phosphorylation 

1.45 



ωLHY/CCA1→eS6 Activation/inhibition strength of LHY/CCA1 on eS6 
dephosphorylation 

-8.63 

ω PRR9/7→eS6 Activation/inhibition strength of PRR9/7 on eS6 
dephosphorylation 

2.94 

ω PRR5/1→eS6 Activation/inhibition strength of PRR5/1 on eS6 
dephosphorylation 

6.55 

ω EC →eS6 Activation/inhibition strength of EC on eS6 
dephosphorylation 

-8.58 

 

  



Table S2. Parameter values of alternative models 

Parameter Description Linear 
Circuit 
Model 

IFFL 
Model 

CFFL 
Model 

γA Timescale of A 1 1 NA 

σA Steepness of sigmoidal function of A 1 5 NA 

ω0
A Basal production rate of A -1.9 -1 NA 

ωLight→A Activation/inhibition strength of light on A 3 3 NA 

γB Timescale of B NA 1 0.3 

σB Steepness of sigmoidal function of B NA 10 5 

ω0
B Basal production rate of B NA -1 -1.9 

ωLight→B Activation/inhibition strength of light on B NA 3 3 

γC Timescale of C NA 2 0.3 

σC Steepness of sigmoidal function of C NA 10 1 

ω0
C, Basal production rate of C NA -0.6 -1 

ω Light→C Activation/inhibition strength of Light on C NA NA 3 

ωB→C Activation/inhibition strength of B on C NA 1 NA 

γeS6 Timescale of eS6 10 10 10 

σphos Steepness of sigmoidal function of eS6 
phosphorylation 

1 10 1 

σdephos Steepness of sigmoidal function of eS6 
dephosphorylation 

1 1 1 

ω0
phos Basal rate of eS6 phosphorylation -6.3 -5 -6.3 

ω0
dephos Basal rate of eS6 dephosphorylation 2 2 2 

ωA→eS6_phos Activation/inhibition strength of A on eS6 
phosphorylation 

10 10 NA 

ωA→eS6_dephos Activation/inhibition strength of A on eS6 
dephosphorylation 

0 0 NA 

ωB→eS6_phos, Activation/inhibition strength of B on eS6 
phosphorylation 

NA NA 10 

ω B→eS6_dephos, Activation/inhibition strength of B on eS6 
dephosphorylation 

NA NA 0 

ω C→eS6_phos, Activation/inhibition strength of C on eS6 
phosphorylation 

NA -6.8 10 

ω C→eS6_dephos Activation/inhibition strength of C on eS6 
dephosphorylation 

NA 0 0 

 

  



Table S3. Dalchau Genes with eS6-P like expression in LD, LL, and CCA1 conditions 

(See SupplementalTableS3.xlsx) 

 

  



Table S4. GO Term enriched in eS6-P like genes 

(See SupplementalTableS4.xlsx) 

  



Table S5. GO Term enriched in all genes with cyclic expression patterns 

(See SupplementalTableS5.xlsx) 

 

  



Table S6. Parameter values for yearly daylength models 

Location a b c 

Oslo 0.11 0.76 0.437 

Paria 0.1 0.12 0.437 

Boston 0.11 0.4 0.434 

 



Supplementary Figures 

Fig. S1. The cyclic behavior of the clock model. The behavior of the clock modules under constant long 

days (16L:8D), transition from long-days to constant light and transition from long-days to constant dark. 



The four components of the clock are indicated by color (red = LHY/CCA1 = C1, orange = PRR9/7 = C3, 

green = PRR5/1 = C4, blue = EC = C2). The grey shaded area indicates the night phase of the light-dark 

cycle.  

 

  



Fig. S2. Comparison of the clock model to the expression of circadian factors from the Diurnal Database. 

Simulated activity of clock components (black) is plotted against normalized expression of circadian genes 

from the Diurnal Database (colored lines, red = LHY and CCA1, orange = PRR9 and PPR7, green = PRR5 and 

PRR1, blue = ELF4 and LUX) (ref 28). Long day (16L:8D) data/simulations are on the right, and short day 



(8L:16D) data/simulations are on the left. The grey shaded area indicates the night phase of the light-dark 

cycle. Experimental and model values were scaled to [0, 1] based on the minima and maxima.  

 

  



Fig. S3. Performance of the eS6-P model using alternatively optimized parameters sets. (A) Behavior of 

the eS6-P model using the top 70 (5%) of parameter sets based on likelihood score under long-day (top), 

CCA1-overexpression (middle) and constant light (bottom) conditions. The black curve indicates the 

experimental data to which the models were fit, and each red curve is a trajectory generated from a 



parameter set. The grey shaded area indicates the night phase of the light-dark cycle or subjective night 

in the case of constant light.. (B) Behavior of the eS6-P model using the next 70 optimized parameter sets 

under long-day (top), CCA1-overexpression (middle) and constant light (bottom) conditions. The black 

curve indicates the experimental data to which the models were fit, and each red curve is a trajectory 

generated from a parameter set. The grey shaded area indicates the night phase of the light-dark cycle or 

subjective night in the case of constant light.  

 

  



 

Fig. S4. Simulations based on a model of eS6-P using a detailed circadian clock model. Trajectories from 

simulations using the De Caluwe et al. (25) clock model (black) are compared to observations from long-



day (top), CCA1-overexpression (middle) and constant light (bottom) conditions. Circadian time is 

measured in hours relative to subjective dawn. Dark grey is darkness and light grey is subjective night. 

 

  



Fig. S5. Parameter values among models with the top 10% of likelihood scores. (A-C) The values of (A) 



the influence of LHY/CCA1 on eS6-P (ωLHY/CCA1→eS6), (B) the difference between the influence of LHY/CCA1 

and PRR9/7 (ωLHY/CCA1→eS6 – ωPRR9/7→eS6), and (C) the steepness of dephosphorylation activation 

(σdephosphorylation) in the top 10% of models. The distribution of each parameter value is shown as a 

scatterplot (left, with model rank on the x-axis and parameter value on the y-axis) and a histogram (right). 

In both panels, blue shading distinguishes the top 5% of models and red shading further isolates the top 

20 models. The top 20 models were selected because of the reduced range of values across all parameters 

among these models.  



Fig. S6. Variance in early day eS6 activity among models with the top 10% of likelihood scores. (A-B) 

The difference between the minimum and maximum observed value (Δ) of the (A) peak activity of eS6 in 

the early day and (B) trough activity of eS6 in response to variations of the night-to-day transition time 

from (ΔtND = +/- 4) across the top 10% of models. The distribution of each difference is shown as a 

scatterplot (left, with model rank on the x-axis and parameter value on the y-axis) and a histogram 

(right). In both panels, blue shading distinguishes the top 5% of models and red shading further isolates 

the top 20 models.   



 

Fig S7. Performance of the Light-Clock model and three alternative models with randomly chosen 

parameter values. The influence diagrams of these models are shown in Fig 1D and Fig 3A. For parameters 

representing negative weight (ω<0), values were randomly drawn from the interval (-10, -1), otherwise 

parameter values were randomly drawn from the interval (1, 10). The clock module of the Light-Clock 

model has a fixed parameter set. 1000 sets of parameters were generated for each model. The 

performance (y-axis) was measured as the absolute value of the difference between the early day maximal 

response under -4 hr perturbed dawn and that under +4 perturbed dawn. Higher values of the metric 

indicate better performance in detecting daylengths with the early day eS6-P response. 

  



Fig. S8. Response of eS6-P to variation in the night to day transition time over consecutive days. (A)  

Diagram of perturbations of the night to day transition and the effect on length of the day relative to a 

normal 12L:12D day for two consecutive perturbed days. The extent of the day is shown by yellow shaded 

regions and the extent of the change in day length is shown by differential shading. (B) Early day behavior 

of eS6-P on the second day in response to varying the night to day transition time from ΔtND = -4 (purple) 

to ΔtND = 4 (yellow) in 1-hour increments for two consecutive days. Each model was measured for 8 hours 

after dawn as the shortest day is 8 hours. (C) The difference in eS6-P predicted by the model around the 

first and second dawn. The difference over the last eight hours before dusk (grey) is shown on the left and 

the difference in the first eight hours after dawn (white) is shown on the right. (D) Early day peak metric 

(ratio of the early day maximum of eS6-P to the eS6-P levels at the dusk) of eS6-P across different degrees 



of dawn variation on two consecutive days. Thin solid lines show early eS6-P response on the second day, 

while thicker transparent lines show early eS6-P response on the first day. 

 

  



Fig. S9. Simulated amounts of eS6-P in response to seasonal changes in daylength over a year across 

models with the top 10% of likelihood scores. (A) The difference between the minimum and maximum 

observed value (Δ) of the maximum daily eS6 activity across the top 10% of models. The distribution of 

each difference values is shown as a scatterplot (left, with model rank on the x-axis and parameter value 

on the y-axis) and a histogram (right). In both panels, blue shading distinguishes the top 5% of models 

and red shading further isolates the top 20 models. (B) Trajectories of the daily maximum (red), daily 

minimum (blue), and daily average (black) eS6 activity values across a simulated year in both the top 5% 



(left) and next 5% (right) of models by likelihood scores. The x-axis indicates the time in days and the y-

axis is the activity of eS6 in arbitrary units.  



Fig. S10. Detection of daylength variations with early-day eS6-P response in the presence of light 

fluctuations and concentration fluctuations. (A) Five representative trajectories from simulations of the 

Clock+Light model (Fig. 1E). For each simulation, the system first reached the steady state under 12-hour 

light and 12-hour dark condition. Next, a perturbation of the time at which the light is turned on was 

performed at the dawn (ΔtND, positive perturbation represents postponed dawn time). Trajectories were 

aligned at the actual dawn. To model fluctuations of light, a white noise term with an amplitude parameter 

μ=3 was added to the differential equation describing the light signal (see Methods). Red curve shows a 

representative light signal is shown. (B) Five representative trajectories from simulations with noise term 

on eS6-P (μ=3). (C) Contingency tables summarizing the relationship between daylength variations and 

the early eS6-P levels under the conditions in (A) and (B). 200 stochastic simulations were performed for 

each daylength. eS6-P responses were categorized into 10 bins, and 21 daylength variations were tested. 



(D) Mutual information between daylength variations (represented by ΔtND) and the early eS6-P levels. 

Multiple noise amplitudes were analyzed for the two conditions indicated. 
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