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Combinatorial perturbation analysis reveals divergent
regulations of mesenchymal genes during epithelial-to-
mesenchymal transition
Kazuhide Watanabe 1, Nicholas Panchy2,3, Shuhei Noguchi1, Harukazu Suzuki1 and Tian Hong 2,3

Epithelial-to-mesenchymal transition (EMT), a fundamental transdifferentiation process in development, produces diverse
phenotypes in different physiological or pathological conditions. Many genes involved in EMT have been identified to date, but
mechanisms contributing to the phenotypic diversity and those governing the coupling between the dynamics of epithelial (E)
genes and that of the mesenchymal (M) genes are unclear. In this study, we employed combinatorial perturbations to mammary
epithelial cells to induce a series of EMT phenotypes by manipulating two essential EMT-inducing elements, namely TGF-β and
ZEB1. By measuring transcriptional changes in more than 700 E-genes and M-genes, we discovered that the M-genes exhibit a
significant diversity in their dependency to these regulatory elements and identified three groups of M-genes that are controlled by
different regulatory circuits. Notably, functional differences were detected among the M-gene clusters in motility regulation and in
survival of breast cancer patients. We computationally predicted and experimentally confirmed that the reciprocity and reversibility
of EMT are jointly regulated by ZEB1. Our integrative analysis reveals the key roles of ZEB1 in coordinating the dynamics of a large
number of genes during EMT, and it provides new insights into the mechanisms for the diversity of EMT phenotypes.
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INTRODUCTION
In epithelial-to-mesenchymal transition (EMT), a developmental
program essential for morphogenic processes in embryogenesis
and crucial in pathogenesis of malignant tumors, the cell-state
transition occurs between two major states, epithelial (E) and
mesenchymal (M), with well-characterized morphological fea-
tures.1–3 In the classical EMT process during development,
transition from E to M state is unidirectional and two phenotypes
are mutually exclusive. However, in cancer cells, phenotypes
induced by EMT can be diverse with multiple intermediate or
metastable states4–7 and the transition between E and M states is
often bidirectional.2,4 Thus, E and M phenotypes are regulated
primarily in a reciprocal fashion during classical EMT, but context-
dependent regulations of E/M phenotypes were observed in
nonconical or partial EMT. It is therefore challenging to obtain a
comprehensive picture of molecular regulation, especially of
reciprocity of E and M phenotypes.
EMT is characterized by a number of effecter genes each of

which contributes to defining E or M phenotypes. Transcriptional
profiling has been used to systematically measure such molecular
phenotypes of EMT in a quantitative manner.8,9 In these studies,
several hundreds of EMT-related genes were selected through
meta-analysis and manual curation using the expressional as well
as functional characterization. For example, Tan et al. applied
machine learning to obtain a list of signature genes, which can
precisely predict aggressiveness of cancer cells.8 Such molecular
approaches contributed to understanding correlation of EMT and

disease phenotypes.8,9 Notably, EMT phenotypes with diverse
transcriptional profiles has been observed in various pathological
conditions.8,9 However, understanding regulatory mechanisms of
wide variety of EMT signature genes, particularly the coordination
of these genes during EMT, requires mechanistic studies in
appropriate model systems.
Among a myriad of EMT-regulating factors discovered to date,

TGF-β has been shown to be a potent EMT-promoting signal,10

and ZEB1 is an EMT-inducing transcription factor, that not only
functions as a regulator for EMT program but is also involved in
tumorigenesis.11 Although TGF-β induces ZEB1 expression,12 it is
not clear whether ZEB1 can serve as an indispensable master
regulator for TGF-β-induced EMT among other master EMT-TFs
including SNAIL/SLUG and TWIST families,2 and whether TGF-β
and ZEB1 are in a linear axis that controls the entire EMT program.
In addition, TGF-β has been shown to play paradoxical (tumor-
initiating and tumor-suppressing) roles in cancer progression.13,14

Similarly, a poised chromatin configuration of ZEB1 promoter was
shown to be tumorigenic, and ZEB1 can be both tumor-promoting
and pro-apoptotic factors.14–16 These observations suggest that
there are complex transcriptional programs activated by these two
factors. However, the regulatory networks connecting these two
factors to diverse transcriptional activities are not clear at the
transcriptomic level.
In this study, we employed combinatorial perturbations to TGF-

β and ZEB1, and created a series of EMT states in mammary
epithelial cells. Using cells at these states of EMT, we applied
transcriptomics, machine learning, mathematical modeling, and
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live-cell imaging analyses to examine how the coordinated
transition between E and M states are regulated. We identified
three groups of M-genes that can be distinguished by their
responsiveness to TGF-β and ZEB1 pathways, and demonstrated
the distinct biological impacts of the three M clusters in breast
cancer patient survival and cell motility regulation. Surprisingly,
high expressions of a cluster of M-genes that are strictly
dependent on ZEB1 have significant association with good
prognosis in breast cancer patients. Furthermore, using a
mathematical model, we show that the reciprocity of EMT is
synergistically controlled by TGF-β and ZEB1, and that the loss of
this reciprocity transitions leads to partial EMT state with increased
reversibility, which reduces the robustness of the destination state.
Our results provide a holistic view of regulations of diverse
mesenchymal genes during EMT, and they elucidate the mechan-
isms by which the cells ensure the coupling between E-gene and
M-gene expressions in the transition. The classification of M-genes
that we developed can be useful for the understanding of the
diversity of EMT that is observed in various physiological and
pathological conditions.

RESULTS
Divergence of mesenchymal genes upon perturbations of TGF-β
and ZEB1
To dissect the molecular events involved in switching E and M
phenotypes during TGF-β-induced EMT, we first generated ZEB1
knockout (KO) clones of MCF10A cells using CRISPR/Cas9 genome-
editing technology (Supplementary Fig. 1, see the section
“Materials and methods” for details). The KO cells did not show
any detectable phenotypes in the basal culture condition
(Supplementary Fig. 2). TGF-β treatment induced suppression of
a representative E marker E-cadherin (E-cad, encoded by CDH1
gene) and activation of a representative M marker Vimentin (VIM)
in wild type (WT) cells (Supplementary Fig. 2), confirming that the
E-genes and M-genes are reciprocally regulated during EMT.
However, TGF-β failed to downregulate E-cad in KO cells, while
VIM was still upregulated to the similar extent with the WT cells
(Supplementary Fig. 2). These results suggest that while ZEB1 is a
potent EMT-inducing transcription factor, its expression is
dispensable for the induction of some M-genes.
To obtain a comprehensive view of the relative contribution of

ZEB1 and TGF-β to EMT expression, we compared the MCF10A
cells under four treatment conditions (TGF-β treated, TGF-β
treated and ZEB1 KO, ZEB1 overexpressed, ZEB1 overexpressed
and TGF-β inhibited) and their respective control conditions (eight
conditions in total, Fig. 1a and Table 1). ZEB1 overexpression and
TGF-β-signaling inhibition were performed by using doxycycline
(DOX)-inducible system and TGF-β type1 receptor kinase inhibitor
SB-431542, respectively. We examined the transcriptomes of the
cells under these eight conditions with cap analysis of gene
expression (CAGE), a highly sensitive and quantitative transcrip-
tome assay which detects activities of transcription start site
(TSS).17,18 We also defined eight contrast conditions (described in
Table 2) for the purpose of calculating log fold-change (logFC) to
quantify differential expression under different regulatory
regimes. We used a list of EMT genes curated from two sources:
a set of 416 E-genes and M-genes annotated by Tan et al.8 (see the
section “Materials and methods”) and additional 319 EMT genes
without explicit E-genes or M-genes annotation.9 Overall, 60.6% of
annotated EMT genes, exhibited significant differential expression
(q < 0.05, see the section “Materials and methods” for details)
under at least one of the eight contrast conditions, compared to
the rest of the genome, where only 10.0% were differentially
expressed. The difference represents a significant enrichment of
differently expressed genes in the annotated EMT set (Fisher’s
exact test, p < 2.2e−16), indicating that our set of EMT genes is

more responsive to manipulation of TGF-β and ZEB1 than the
genome in general.
We next explored expression differences between genes

associated with epithelial phenotypes (E-genes) and those
associated with mesenchymal phenotypes (M-genes). As
expected, E-genes have lower expression under TGF-β treatment
or ZEB1 overexpression conditions, and higher expression when
these factors are inhibited or knocked out, while M-genes show
the inverse pattern (Fig. 1b and Supplementary Fig. 3), though
there is obvious variation in the strength and level of response of
each class of EMT genes to TGF-β or ZEB1 gain and loss. If we only
consider cases of significant differential expression, 89.1% of E-
genes were down-regulated by TGF-β treatment (TGF-β vs. WT) or
ZEB1 overexpression (DOX vs. DMSO), while 89.7% of M-genes
were up-regulated in response to TGF-β treatment or ZEB1
overexpression. This is consistent with TGF-β/ZEB1 induction
being responsible for a shift from epithelial phenotype to
mesenchymal phenotype. As expected, the mean expression
levels of E-genes and M-genes showed a negative correlation
among the eight conditions. However, the overexpression of ZEB1
had much stronger effect on E-genes than on M-genes (Fig. 1b,
the blue dots compared to the red dots), suggesting the primary
role of ZEB1 in inhibiting E genes.
We next considered the response to TGF-β and ZEB1

independently. E-genes and M-genes exhibit different patterns
of differential expression to TGF-β and ZEB1. Among E-genes,
there is a large degree of overlap between genes, which are
down-regulated in response to both TGF-β and ZEB1 (67.1%),
while almost twice as many M-genes are differentially expressed
in response to TGF-β compared ZEB1, such that differential
expression of most M-genes (64.4%) is specific to one factor or the
other (Fig. 1c). This difference in expression between E-genes and
M-genes is robust to variations in the q-value and logFC
thresholds that we used to define differential expression
(Supplementary Fig. 4). The overlap for E-genes and that for M-
genes become similar only with very large fold-change thresholds
(logFC > 2) and even with this high threshold, E and M genes
remain distinct as more E genes are differentially expressed in
response to ZEB1, while more M genes are differentially expressed
in response to TGF-β. In addition, we observed a difference
between E-genes and M-genes in terms of the dependence of one
EMT factor on the other one: there is an 80% overlap in E-genes
that were both differentially expressed in response to ZEB1
induction (DMSO+DOX vs. DMSO) and in response to ZEB1
induction in the absence of TGF-β (DOX+SB vs. SB), and a 55%
overlap between E-genes differentially expressed in response to
TGF-β (WT+TGF-β vs. WT) and in response to TGF-β in the absence
of ZEB1 (TGF-β+dZEB vs. dZEB) (Fig. 1d). This suggests that most
E-genes are differentially expressed in response to both TGF-β and
ZEB1, and the response to ZEB1 alone was stronger than that to
TGF-β. Comparably, in M-genes these overlaps are only 64% for
ZEB1-induced differential expressions, and 43% for TGF-β-induced
differential expressions (Fig. 1d). We also observed a distinction
between E-genes and M-genes across EMT-inducing factors:
among E-genes that were differentially expressed in response to
ZEB1 without TGF-β, 64% were differentially expressed in
response to TGF-β with ZEB1, and 42% were differentially
expressed in response to TGF-β without ZEB1. The corresponding
values for M-genes were only 36% and 22%, respectively. While
the overlap between TGF-β and ZEB1 expressions, both with and
without the other factor, represents the largest differences in the
amount of overlapping differential expression, E-genes are
differentially expressed more uniformly than M-genes across all
but a few comparisons (Fig. 1d), an observation which is also
robust to stricter definitions of differential expression (Supple-
mentary Fig. 4). Therefore, we conclude that M-genes exhibiting a
divergent response to different combinations of ZEB1 and TGF-β
input, while E-genes are more uniformly responsive to the
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TGF-β-ZEB1 axis (Fig. 1d). Furthermore, given both the divergence
between TGF-β-induced and ZEB1-induced differential expression
among M-genes, as well as the fact that M-genes are less
frequently differentially expressed by either TGF-β treatment or
ZEB1 induction independently, we hypothesized the existence of
multiple M-gene regulatory modules under the control of TGF-β
and ZEB1.

Three distinct types of regulatory circuits connect TGF-β and ZEB1
to M-genes
In an attempt to integrate all our expression profiles into single
analysis, we first applied hierarchical clustering to logFC expres-
sion data (Supplementary Fig. 5). While the resulting tree largely
separates annotated E-genes and M-genes into two main clusters,
respectively, 19.5% of annotated EMT genes were incorrectly

Fig. 1 Quantification of EMT gene expression in response to TGF-β and ZEB1. a Illustration of perturbations of TGF-β and ZEB1 conditions in
this study. Each colored perturbation has a control condition. b Mean expression levels of E-genes and M-genes of eight conditions. Vertical
and horizontal bars show standard error of the means for all annotated E or M genes. The colors are matched to a. c Venn diagrams showing
the overlap in E (top) and M (bottom) genes, which show significant expression differences in response to TGF-β or ZEB1 treatment relative to
their respective control conditions. TGF-β response is in pink while ZEB1 response is in light blue. The number E-genes and M-genes
responding to TGF-β or ZEB1 uniquely, as well as those responding to both are listed in the respective part of the Venn diagram. The type of
response, activation, or repression, is indicated by directional arrows (up-arrow: activation, down-arrow: repression). The overlap was
quantified using the Jaccard index, which is the number of genes differentially expressed by both TGF-β and ZEB1 divided by the total
number of differentially expressed genes. d Jaccard indices of E-genes and M-genes for each pair of conditions. Heatmap shows all the Jaccard
indices. Lower triangular entries: E-genes. Upper triangular entries: M genes. The Jaccard index for the conditions which differ most between
E-genes and M-genes are shown in those cells. Swarm plot shows the differences between the Jaccard indices of E-genes and those of the M-
genes for each of the 28 pairs of conditions (p < 0.001 for single value t-test with a null distribution centered at 0)
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classified (19.2% E-genes and 19.8% M-genes). Although some of
this error may be the result of misannotated EMT genes, the
difficulty in correctly separating E-genes and M-genes may in part
be due to the high-dimensionality of our data set, as well as the
assumption that all conditions are equally important to the
distinction between E-genes and M-genes.
To address this issue, we used a semi-supervised approach to

classify the E-genes and M-genes, and to identify major classes of
M-genes subsequently. We first applied a self-organizing maps
(SOM) algorithm (see the section “Materials and methods”) to map
EMT genes onto a 10 × 10 grid based on their logFC of expression
under the eight contrast conditions. This dimensionality reduction
clearly separated E-genes and M-genes (Fig. 2a), with 87 of the 100
nodes dominated by one type of EMT gene (E:M ≥ 2 or M:E ≥ 2),
and 65 consisting exclusively of E-genes or M-genes. Of the
remaining 13 nodes, 5 contain a mixture of annotated E-genes
and M-genes, while the remaining nodes lack EMT genes with E or
M annotations (black nodes, Fig. 2a), though this accounts for only
15 of the 319 (4.8%) EMT genes without an E or M annotation.
Overall, 95.5% of EMT genes fall into a node with more than a 2:1
ratio of E/M or M/E genes. Using this cutoff, 7.9% of annotated
EMT genes were incorrectly classified, and 87.6% of annotated
EMT genes were correctly classified. Based on this classification,
we further propagated E and M annotations to non-annotated
EMT genes in nodes with predominant E-gene or M-gene
annotations. Importantly, after updating our definition of E-
genes and M-genes, we observe the same overall pattern of
response to different combinations of TGF-β and ZEB1 expression,
though there is slight reduction in responsiveness overall
(Supplementary Table 1).

Based on the diversity in M-gene regulation, we used nodes
with predominant M-gene annotation for the further exploration
of M-gene regulatory modules. We selected 38 nodes from our
SOM grid with predominantly M-genes and applied hierarchical
clustering, and cut the resulting tree to generate four clusters
(Fig. 2b and Supplementary Fig. 6; see the section “Materials and
methods”). Of the resulting clusters, three (‘M1’, ‘M2’, and ‘M3’ in
Fig. 2b) contain at least 70 genes overall and more than 30
annotated M-genes, but the smallest (‘Other’ in Fig. 2b) contained
only 11 genes total and was therefore deemed too small for
further analysis. The M1, M2, and M3 clusters together cover 86.2%
of annotated M-genes while including only 9.4% of E-genes (see
Table 3). To visualize expression of our M-gene clusters, we

Table 1. Combinatorial perturbation conditions

Expression condition Description

WT Control

TGF-β TGF-β treatment

dZEB CRISPR-mediated ZEB1 knockout

TGF-β+dZEB TGF-β treatment and ZEB1 knockout

DMSO Control for doxycycline-induction of ZEB1 and
SB431542

DOX Doxycycline-induction of ZEB1

SB TGF-β inhibition by TGF-β receptor kinase
inhibitor SB431542

DOX+SB ZEB1 over-expression and TGF-β inhibition

Table 2. Contrast between expression conditions

Expression contrasts Description

TGF-β vs. WT Response to TGF-β induction

DOX vs. DMSO Response to ZEB1 induction

SB vs. DMSO Response to loss of TGF-β
dZEB vs. WT Response to loss of ZEB1

TGF-β+ dZEB vs. dZEB Response to TGF-β induction in the absence
of ZEB1

TGF-β vs. TGF-β+ dZEB Response to TGF-β induction in the presence
of ZEB1

DOX+ SB vs. SB Response to ZEB1 induction in the absence of
TGF-β

DOX vs. DOX+ SB Response to ZEB1 induction in the presence
of TGF-β

Fig. 2 Self-organizing maps (SOMs) for E-genes and M-genes and
for clustering M-genes. a SOM nodes by frequency of E-genes and
M-genes using a visual representation of the final map of EMT genes
onto a 10-by-10 grid by SOM. The color of each node indicates the
frequency of E-genes (darker-red) and M-genes (darker-blue) in each
node. Nodes that are colored black are empty. b Clustering of SOM
nodes with predominantly M-gene membership using a visual
representation of the final map of EMT genes onto a 10-by-10 grid
by SOM. Each of the 38 genes which have a 2:1 or greater ratio of M-
genes to E-genes is colored according to the cluster of M-genes it
was assigned to by hierarchical clustering (red=M1, green=M2,
blue=M3, gray= other)

Table 3. Size and membership of the three M-genes expression
clusters

Cluster # Total genes M-genes E-genes Notable genes

1 180 92 (48.9%) 16 (6.8%) SNAI1

2 80 39 (20.7%) 1 (0.4%) FN1, VIM

3 77 31 (16.5%) 4 (1.7%) TWIST1, TWIST2
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performed principal component analysis (PCA) with the logFC
expression data (Supplementary Fig. 7). We found that each M-
gene cluster has a distinct pattern of expression, and we inferred
the key perturbations that gave rise to the differences among the
M-gene clusters by examining the loading (R) of individual
principal components (PCs). In particular, PC1, which separates
M1 and M3, is correlated with TGF-β response (R= 0.363 for WT
+TGF-β vs. WT and 0.264 for dZEB+TGF-β vs. dZEB) and
anticorrelated with ZEB1 response (R=−0.518 DMSO+DOX vs.
DMSO and −0.541 for SB+DOX vs. SB), suggesting that M1 genes
are more responsive to TGF-β and M3 genes are more responsive
to ZEB1. Similarly, PC2 is correlated with ZEB1-independent TGF-β
response (R= 0.653 dZEB+TGF-β vs. dZEB), suggesting M2 genes
have a stronger response to TGF-β independent of ZEB1 than M1
and M3 genes do. While visualizing expression data in key
directions is useful,19 we were unable to distinguish our three
clusters of M-genes with PCA alone (compare the labeled plots to
the unlabeled plots (Supplementary Fig. 7, upper triangle).
We next performed further characterization of each group of M-

genes. The M1 cluster covers almost half (48.9%) of M-genes,
including the regulator SNAI1, fibroblast growth factor (FGF2) and
fibroblast growth factor receptors (FGFR2), heat-shock proteins
CRYAB and HSBP2, as well as several genes associated with tumor
growth and migration including MMP9,20 CDH11,21 FOXC1,22 and

RAC1.23 However, 25 of the M-genes in this cluster (13.3% of total
M-genes) belonged to a single node comprised of genes that were
not expressed across all data sets, and so were excluded from
subsequent analysis (doing this also excluded 23% of the E-genes
initially included in our M-gene clusters). These M1 genes were up-
regulated in response to TGF-β treatment more than ZEB1
induction (Mann–Whitney U-test, p < 2.2e−16), but the response
of M1 genes to TGF-β was significantly reduced when ZEB1 was
absent (median logFC changed from 0.83 to 0.14, p= 1.10e−10,
Mann–Whitney U-test) (Fig. 3a). Therefore, M1 genes are
upregulated by TGF-β, and the responses depend on ZEB1.
However, neither of the factors has a strong influence on these
genes alone. The next largest cluster M2 (20.7% of M-genes)
includes the structural proteins FN1 and VIM, which are both
associated with the mesenchymal cell phenotype.24,25 Like M1
genes, M2 genes had greater response to TGF-β than to ZEB1
(Mann–Whitney U-test, p= 0.02) (Fig. 3b), but the difference in
median response was much smaller for M2 genes (TGF-β= 1.01,
ZEB1= 0.57) than for M1 genes (TGF-β= 0.83, ZEB1= 0.0, p=
2.56−e15, Mann–Whitney U-test). Furthermore, the response of
M2 genes to TGF-β was not affected by the absence of ZEB1
(Mann–Whitney U-test, p= 0.69) nor was its response to ZEB1
affected by the inhibition of TGF-β (Mann–Whitney U-test, p=
0.33) (Fig. 3b). As such, while TGF-β had a larger impact on M2

Fig. 3 Expression of M-gene clusters under TGF-β and ZEB1 regulation. a Boxplot of log fold-change of expression of M1 genes in the eight
contrast conditions (see Table 2). The colored region (red) indicates the inter-quartile range of expression while whiskers extend 1.5 times this
range on either side. Outliers are indicated by black dots. The purple dotted lines above the plot indicate comparisons between the expression
under conditions, specifically, TGF-β vs. WT to DOX vs. DMSO, TGF-β vs. WT to TGF-β+dZEB vs. dZEB and DOX vs. DMSO to DOX+SB vs. SB. A *
indicates that distribution of expression is significantly different based on the Mann–Whitney U-test at an alpha of 0.05. b Similar to a but for M2
genes, with a green colored region. c Similar to a, but for M3 genes, with a blue colored region. d A model of EMT-gene regulation based on
the expression patterns of M-genes clusters in a–c. Green arrows indicate activation while red arrows indicate repression
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expression, both TGF-β and ZEB1 regulated M2 genes indepen-
dent of one another. The M3 cluster (16.5% of M-genes) contains
the transcription factors TWIST1 and TWIST2, growth factors HFG
and FGFR1, two Mitogen-activated protein kinases, MAP3K3 and
MAPK7, which are over-expressed in tumors,26 and the Insulin-like
growth factor-binding IFGBP3, which has complicated relationship
with cancer progression depending on cancer type.27–29 M3 genes
responded to ZEB1 more than TGF-β (Mann–Whitney U-test, p=
2.32e−7) with no significant difference in ZEB1 response in the
absence of TGF-β (Mann–Whitney U-test, p= 0.09) (Fig. 3c). M3
genes responded to TGF-β induction (median logFC= 0.35). This
response was lost when ZEB1 was absent (median logFC= 0) and
this change in response was significantly different (Mann–Whitney
U-test, p= 7.18e−6). Therefore, we conclude that M3 genes are
regulated by ZEB1 independent of TGF-β. To further confirm the
differential expression patterns among the M-gene clusters, we
performed RT-PCR for representative genes in each cluster and the
results were consistent with our CAGE experiments and the
clustering analysis (Supplementary Fig. 8). The clustering informa-
tion for all 735 EMT genes that we analyzed is listed in
Supplementary Table 2. In general, the three largest clusters
obtained from our analysis show distinct patterns of regulation by
TGF-β and ZEB1, in contrast to E-genes which primarily respond to
ZEB1 directly (Supplementary Fig. 9). We summarized our findings
in an illustrative model shown in Fig. 3d, which is largely reflective
of the differences in expression suggested by our PCA analysis. In
this model, M1 genes are regulated by TGF-β and ZEB1 via an AND
logic gate. This AND-gate can only be turned on by TGF-β but not
by ZEB1, possibly because TGF-β can activate ZEB1 completely,
but ZEB1 can only partially activate TGF-β signaling (Fig. 3d,
dashed arrow). The activation of TGF-β signaling by ZEB1 is
supported by previous findings that show the mechanisms and
importance of the mutual activation between TGF-β and ZEB1.30–32

In particular, ZEB1 activates SMAD proteins which serve as key
mediators of TGF-β signaling.31,32 In contrast to the M1 gene
cluster, M2 genes are regulated by the two factors via an OR-gate,
M3 genes are regulated by ZEB1 but not ZEB1-independent TGF-β
pathway, and E-genes are assumed to be controlled by ZEB1. The
latter assumption is based on the observation that 82% of E-genes
were downregulated by the expression of ZEB1 alone. Note that
the arrows in this simplified network diagram (Fig. 3d) do not
represent direct molecular interactions, but the diagram estab-
lishes causal, rather than correlative, relationships between the
two core EMT factors and other M-genes because of the controlled
perturbations that we performed.
We tested if the M-gene clusters are differentially regulated by

other EMT inducers using a set of previously published microarray
data33 (see Supplementary Method 1, Supplementary Table S3). We
found that M2 and M3 genes have a significantly larger response to
EMT inducing factor Gsc than M1 genes do (Supplementary Figs. 10
and 11). Future work involving systematic and controlled perturba-
tions of EMT factors will be required to elucidate the regulation of M-
genes by other core EMT transcription factors.

M-gene clusters have distinct biological functions
To investigate the functional difference between the three M-gene
groups, we retrieved human GO annotation from Gene Ontology
Consortium and identified significantly enriched terms within
each group of M-genes compared to the genome overall using
Fisher’s exact test (p < 0.05, see “Materials and methods”). M1 and
M2 genes both had 85 significantly enriched terms while M3
genes had only 29. However, the majority of these terms are
uniquely enriched to one group of M-genes, with only six terms
found in all groups and 67, 66, 18 appearing exclusively in M1, M2,
and M3 genes, respectively (Fig. 4a). In comparison, there are 169
GO terms are uniquely enriched among E-genes (Supplementary
Table 4). However, when we categorized E genes into three

groups by the responsiveness to ZEB1 and TGF-β (as in Fig. 1c),
neither E genes responsive to ZEB1 or to TGF-β alone were
enriched for any GO terms, while those responsive to both were
enriched for 20 terms, primarily related to cell–cell junctions and
adhesion (Supplementary Table 5). Among the set of unique
genes in each group, we identified several sets of GO terms
related to the same overarching function, which we have
exhibited in Fig. 4a. In particular, we highlight the contrast
between M1 and M2 genes: although both groups are enriched
for term related to apoptosis, M1 genes are enriched for several
terms related to cell motility, adhesion, and proliferation, while M2
genes are enriched for terms relating to the negative regulation of
the same processes. Additionally, M2 are enriched for a wide
variety development-associated GO terms not found in M1,
including circulatory system, nervous system, embryonic, and
other organs. This indicates a distinction between classes of M-
genes: M1 genes are associated with the mobility and proliferative
qualities associated with EMT, and M2 genes are related to
development functions.
In addition to normal cellular functions, EMT is also strongly

implicated in cancer progression, especially in breast cancers.34,35 To
check whether the three clusters of M-genes have differential roles
in prognosis of breast cancer patients, we performed survival
analysis for all the EMT genes annotated in this and earlier studies36

(see the section “Materials and methods” for details). We found that
there is no significant difference between patients with low and
high expressions of E, M1, and M2 genes in terms of the median
survival months (Fig. 4b), indicating the overall complexity of EMT’s
role in cancer progression. However, high expression of M3 genes is
significantly associated with better prognosis compared to low
expression of the corresponding genes in the breast cancer patients
(Fig. 4b, see Supplementary Table 2 for the full list of median survival
months for the EMT genes). The Kaplan–Meier plots for three
representative genes are shown in Fig. 4b. Among these genes,
SPARCL1 was identified as a tumor suppressor gene.37 ZCCHC24 is
strongly correlated with sensitivity to drug treatment.38 MFAP4 is
downregulated in several types of cancer and it was recently
suggested to be a marker for developing therapies against cancer.39

These results suggest that the high expression of the genes that are
strictly dependent on ZEB1 pathway may play protective roles in
cancer progression, or they can be served as markers for improved
prognosis. To exclude the possibility that the association between
better prognosis and high expression of M3 genes was driven by a
few outlier genes, we calculated the percentages of genes of which
higher expressions are significantly associated better prognosis for
each cluster. Consistent with the boxplot and the t-test (Fig. 4b), M3
cluster has higher percentage of such genes (45.7%) than any other
cluster does (M1: 33.6%, M2: 22.5%, E: 30.7%). These results are
consistent with several recent findings that challenge the simple
association between mesenchymal state and the invasiveness of
cancer: higher expression of certain mesenchymal genes is
associated with better prognosis, or inversely, higher expression of
certain epithelial genes is associated with worse survival.8,40,41 For
instance, the E-gene GRHL2 (Supplementary Table 2) was shown to
correlate with poor survival across all subtypes of breast cancer.42

We next performed gene set enrichment analysis to further
explore the significance of the M-gene clusters in cancer settings.
We found that these clusters are differentially expressed across a
variety of cancer types (see Supplementary Method 2), suggesting
that co-expression of M-gene cluster occurs in cancer. M3 genes
specifically are uniquely enriched among genes differentially
expressed in luminal A breast cancer and papillary thyroid cancer
(Supplementary Tables 6 and 7). However, the set of differentially
expressed genes tends to be small (between 4% and 28% of the
cluster), so such relationship between M-gene clusters and cancer
is likely driven by sub-clusters of cancer-related genes. We
performed further analysis on the expression of the M-gene
clusters in mesenchymal-like cancer cell lines (Supplementary
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Method 3). We found that the mean expressions of the three M-
gene clusters are significantly different in these cancer cell lines:
M2 has the highest expression level and M1 has the lowest
expression level (Supplementary Fig. 12). In addition, M3 genes
have stronger within-cluster correlations (M3 genes vs. M3 genes)
than between-cluster correlations (M3 genes vs. M1/M2 genes) in

these cells (Supplementary Figs. 12 and 13). These results suggest
the significance of the M-gene clusters in cancer cells.

Differential cell movement patterns regulated by TGF-β and ZEB1
To explore the relation between gene clusters and cellular
phenotypes controlled by TGF-β and ZEB1, we collected imaging

Fig. 4 Functional annotations and survival analysis of M clusters. a Bar graphs show groups of related GO terms associated with each cluster
of M-genes. Venn diagram shows the overlapped GO terms (p < 0.05, Fisher’s exact test, for selection of GO terms) among the three M clusters.
b Top: Differences between high expression and low expression cohorts in terms of median survival months for breast cancer patients. Each
group represents one type (cluster) of genes. The colored region indicates the inter-quartile range of expression, while whiskers extend 1.5
times this range on either side. Outliers are indicated by black dots. Single-value t-test was performed with each group of median survival
months. Bottom: Kaplan–Meier plots for three representative M3 genes. Survival months and Kaplan–Meier plots were obtained from KM-
Plotter.36
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data for MCF10A cells under the eight conditions listed in Table 1
and analyzed the movement patterns of the cells for each
condition (Fig. 5a). We used four metrics to quantify the cell
movement for each trajectory: the mean instantaneous velocity,
the displacement scaled by duration, the straightness index, and

the lifetime-averaged number of nearest neighbors (see the
section “Materials and methods”). Overexpression of
ZEB1 significantly increased the velocity of the cells, whereas
the influence of TGF-β treatment on velocity is less significant (Fig.
5b, top panel). Nonetheless, inhibition of TGF-β signaling had the

K. Watanabe et al.

8

npj Systems Biology and Applications (2019)     1 Published in partnership with the Systems Biology Institute



most prominent negative effect on the velocity of the movement.
In contrast, increasing TGF-β or ZEB1 signal had significant
positive effect on displacement, which quantifies the overall
migration efficiency of the cells. ZEB1 overexpression was the
most potent condition to increase displacement, while the
presence of TGF-β-signaling pathway was also essential for the
increase (Fig. 5b, panel 2). ZEB1 alone positively influenced the
straightness of the cell movement, even in the absence of the
TGF-β-signaling pathway, whereas the influence of TGF-β on
straightness depends on the presence of ZEB1 (Fig. 5b, panel 3).
ZEB1 also had a predominant role in reducing the number of
neighboring cells during the lifetime of the trajectories (Fig. 5b,
bottom panel), suggesting that its positive regulation of the
straightness of the movement is partially via the reduction of cell-
to-cell contact. These results demonstrate the key role of ZEB1 in
regulating the straightness of the cell movement, which is
correlated with the overall efficiency of cell migration.
We next asked how the expression of M-gene clusters is

correlated with the movement patterns. We calculated the
Spearman correlation coefficients between the gene expression
levels across the eight conditions and values of each of the
movement metrics described above under the same conditions.
These correlation coefficients serve as distance measurements
between the gene expression pattern of each gene and move-
ment pattern. For example, a positive coefficient between the
expression of a gene and displacement means that the higher
expression of that gene is correlated with the higher displace-
ment. Among the three M-gene clusters, the expression of M2
genes has the strongest correlation with velocity, displacement,
straightness, and nearest neighbors (all four metrics of move-
ments). Compared with M2 genes, the expression of M3 genes has
weaker, but still significantly positive correlation with velocity, and
comparable correlations with all other three metrics. This suggests
that M2 and M3 genes have similar contributions to the overall
movement patterns. We asked under which specific conditions M2
gene expression shows better correlation with the velocity than
the expression of other M-genes does, and we found that when
cells were treated with TGF-β in the absence of ZEB1, velocity was
significantly increased, and this is the condition under which M3
genes, but not the other two groups of genes, were significantly
(>2-fold) upregulated (Supplementary Fig. 14). In contrast to M2
and M3 genes, the expression of M1 genes is not significantly
correlated with the displacement, and its correlations with other
movement metrics are much weaker than that of the expression
of M2 and M3 genes. These weak correlations are consistent with
the differential sensitivities of cell movement patterns and M1
gene expression to EMT signals: the movement of the cells is
sensitive to perturbations to either TGF-β or ZEB1, whereas M1
genes can only be upregulated when both signals are present.
Nonetheless, the significant correlation between the expression of
M1 genes and some movement patterns is consistent with the GO
analysis (Fig. 4a).

A mathematical model for ZEB1-TGF-β transcriptional network
reveals the role of ZEB1 in controlling reciprocity and reversibility
of EMT
To gain more insights into the roles of ZEB1 in controlling EMT, we
built a mathematical model to describe the gene regulatory
network for EMT in response to TGF-β signal based on the three
groups of M-genes and one E-gene group (Fig. 6a). In particular,
M1 genes are activated by TGF-β and ZEB1 via an AND logic gate,
M3 genes are directly activated through ZEB1-dependent pathway
but not ZEB1-independent pathway, and M2 genes are influenced
by both ZEB1-dependent and ZEB1-independent pathway via an
OR logic gate. We assumed that the E-genes are primarily
controlled by ZEB1-dependent pathway, as suggested by the
expression analysis of E genes in earlier sections (Supplementary
Fig. 9). In addition, we included some known feedback loops
involving ZEB1 that were established in earlier studies, including a
positive feedback loop between ZEB1 and TGF-β,30–32 and a
representative mutual inhibition loop formed by ZEB1 and
another factor (e.g. miR200, OVOL2, and GRHL2.4,43,44 Note that
all of these typical E-genes were correctly classified as E-genes
with our algorithm. See Supplementary Table 2). In our classifica-
tion analysis of M-genes, ZEB1 belongs to M2 cluster (Supple-
mentary Table 2), which is activated by upregulating ZEB1 itself.
This is consistent with the positive feedback loops described in
Fig. 6a, and this self-activating feedback may be mediated by
other genes, such as ESRP1 and HAS2, as well.45,46

We performed bifurcation analysis with the model by varying
two parameters: the strength of external TGF-β signal, which
represents physiological inducer of EMT and the concentrations of
the exogenous ZEB1 which was controlled experimentally in this
study. With the increasing strength of external TGF-β, the
production of E-genes was turned off, and the production of all
types of M-genes was turned on (Fig. 6a). The ‘flipping’ from E-on-
M-off state to E-off-M-on state shows a reciprocal regulation of E-
genes and M-genes under normal conditions. In addition, the
model suggests that the TGF-β-induced EMT is irreversible once
the cells have committed to the complete M state, and this is
consistent with earlier mathematical models and experimental
observations.6,47 Note that in this study we define reversibility of
EMT as the ability for the system to return to the E state upon the
complete withdrawal of EMT signal TGF-β or ZEB1 (transition from
red/yellow branch to blue branch with EMT signal decreasing to
zero in Fig. 6a–d). It is possible to examine the reversibility of EMT
upon partial withdrawal of EMT signal but this property is more
accurately described as hysteresis instead of (ir)reversibility.48 We
next blocked the production of ZEB1 in the model and performed
similar bifurcation analysis. In the absence of ZEB1, the TGF-β
signaling only triggered the transition into a partial EMT state, in
which only M2 was upregulated, whereas the ZEB1-dependent M1
and M3 genes were not responsive (Fig. 6b). In addition, the
model predicts that TGF-β-induced EMT becomes reversible upon
the loss of ZEB1 (Fig. 6b, e).
Exogenous expression of ZEB1-triggered reciprocal regulation

of E-genes and some M-genes: with increasing ZEB1 production

Fig. 5 Differential cell movement patterns regulated by ZEB1-dependent and ZEB1-independent pathways. a Cell movement trajectories
when TGF-β signaling and/or ZEB1 expression is perturbed under eight conditions. Hundred cells were randomly selected for each condition.
Each trajectory was centered at its starting position. Scale bar represents a length of 100 μm. b Distributions of four metrics (instantaneous
velocity, mean displacement normalized by duration of trajectory, straightness index of the movement, and number of nearest neighbors)
shown in letter-value plots for cell trajectories under eight conditions. Statistical significance was obtained using Mann–Whitney U-test. FC
fold-change. c Distributions of Spearman correlations coefficients (as a distance measurement) between gene expression and movement
metrics for four type of genes (E, M1, M2, and M3) across eight conditions. The colored region indicates the inter-quartile range of expression
while whiskers extend 1.5 times this range on either side. Outliers are indicated by black dots. d Scatter plots showing pairwise relationships
between correlation coefficients of gene expression and different movement metrics. ***p < 0.001, **p < 0.01, *p < 0.05, N.S.: not significant (p
> 0.05), t-test. Significant mark at each box indicates the p value for testing if the mean of the group is significantly different from 0. Significant
mark at each horizontal bar indicates the p value for testing if two groups of values are significantly different
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rate, E-genes were downregulated whereas M2 and M3 genes
were upregulated (Fig. 6c). However, exogenous ZEB1 did not
activate M1 genes because of the absence of exogenous TGF-β.
Nonetheless, the model suggests that ZEB1 can trigger irreversible
EMT (Fig. 6c). In addition, the model predicts that the inhibition of
TGF-β can reduce the irreversibility (Fig. 6d, g).

To validate the predictions in terms of the reversibility (Fig. 6e),
we first verified that TGF-β-induced EMT is irreversible in most
WT cells at least for 10 days without continuous exposure to TGF-β
using an EMT reporter system (see the section “Materials and
method”, Fig. 6f). In contrast, the EMT phenotype induced by TGF-
β was reversed by inducing ZEB1 deletion using an inducible
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genome-editing system with DOX-inducible Cas9 and constitutive
expression of ZEB1-targeting gRNA (Fig. 6f). Furthermore, transient
induction of ZEB1 expression triggered irreversible EMT (Fig. 6h,
left and middle panels), which is consistent with our modeling
analysis (Fig. 6g, top panel). Interestingly, the irreversibility of the
transition is even more robust than that of the TGF-β-induced EMT
(Fig. 6h, middle panel, Fig. 6f, top right panel) 10 days after signal
withdrawal. Treatment with TGF-β inhibitor upon withdrawal of
exogenous ZEB1 expression caused a partial reversal of the EMT
(Fig. 6g, bottom panel, Fig. 6h, right panel). These results suggest
that the endogenous ZEB1 with its feedback regulation is essential
for maintenance of irreversible EMT phenotype in mammary
epithelial cells as reported for other cell types.30 Together with the
results shown in earlier sections, our data indicate that the
irreversibility and the reciprocity of EMT are both regulated by
ZEB1, and these two properties may be closely related.

DISCUSSION
EMT is involved in many biological processes, but a remarkable
diversity of EMT phenotypes has been observed in both distinct
and similar pathological conditions.8,9,49 This diversity may be
attributed to the metastable states that exist between terminal E
and M states.2,4–6 To describe these multiple states, a linear
lineage progression model with coupled changes of E-gene and
M-gene expression was widely used.2,4,49 In this study, we
identified the key roles of ZEB1 in regulations of the coupling
between E-genes and M-genes. In addition, our findings raised the
possibility that genetic or microenvironmental perturbations on
ZEB1 activity may result in decoupling of E and M phenotypes,
which may contribute to the diverse ‘hybrid’ EMT populations
observed previously.49 Furthermore, our analysis of the expression
of EMT genes in response to ZEB1 and TGF-β not only indicates
that M-genes exhibit a greater diversity of responses, but also
suggests that they can be classified into no less than three sub-
clusters. M-gene clusters have distinct patterns of expression in
response to different perturbations of ZEB1 and TGF-β, and they
can also be separated based on their functions, with M2 exhibiting
development-related function, while M1 genes are involved in cell
motility, growth, and adhesion. Furthermore, M3 genes have a
significant association with the prognosis of breast cancer,
indicating that genes that are controlled by ZEB1 but not other
TGF-β-dependent pathways likely play a protective role. Although
ZEB1 was shown to promote tumor initiation and metastasis,50 the
importance of the poised ZEB1 promoter status in cancer
progression15 indicates that there is a subset of ZEB1-induced
genes that may be inversely correlated with tumorigenesis. This
may account for the differential roles of multiple EMT states in
progression of cancer.49 The existence of these functionally
distinct sub-groups of M-genes further elucidates the connection
between decoupling and hybrid EMT phenotypes because the
disruption of normal regulation may not affect all processes
involved in EMT equally. Our study focused on the diversity of M-
genes instead of E-genes, because M-genes are more diverse than

E-genes in terms of their responsiveness to EMT-inducing factors
(Fig. 1). However, it is possible that E-genes exhibit significantly
albeit more weakly divergent responses, and they may be
diversely regulated by factors other than ZEB1 and TGF-β. Future
work is warranted to test these possibilities.
Our model elucidates the key roles of ZEB1 in regulating the

reciprocity of EMT. During EMT, ZEB1 is directly responsible for the
downregulation of most E-genes and the upregulation of a group
of M3 genes. Effectively, ZEB1 ensures the coupling between the
loss of the E phenotypes and the gain of M phenotypes.
Conversely, the absence of ZEB1 blocks the ability of the cells to
transition to terminal M state, and it decouples the dynamics of E-
genes and M-genes. In addition, a ZEB1-independent pathway
that activates M1 genes is also required for the complete
transition to the terminal M state. Taken together, our model
provides a mechanistic view of the EMT transcriptional network
controlled by ZEB1 and TGF-β at the transcriptomic level. Our
results also demonstrated the importance of ZEB1 in controlling
the reversibility of EMT. This is consistent with a very recent study,
which showed the essential roles of ZEB1-miR200 feedback loop
in the hysteresis of EMT, and that the varied reversibility of EMT
can influence the metastatic potentials of cancer cells.48 Our
results further suggest that ZEB1 serves as the hub for
coordinating the reciprocity of E-genes and M-genes, and this
coupling is closely related to the variable reversibility of EMT. In
our mathematical model, we took the simple assumption that
ZEB1 forms a positive feedback (double-negative) loop with
another E-gene. In fact, ZEB1 may form positive feedback (double-
positive) loops with other M-genes, such as SNAIL or TWIST as
well, and these feedback loops may also contribute to the
irreversibility of EMT. With the positive feedback loops involving
ZEB1, E-genes and M-genes are reciprocally regulated, and their
dynamics are always inversely correlated when the extracellular
signal is varied (Supplementary Fig. 15). This reciprocity is also
essential for the irreversibility of the EMT. Without the feedback
loops (e.g. loss of ZEB1), the reciprocity of E-genes and M-genes is
compromised, and EMT becomes more reversible because some
of the feedback loops requires the downregulation of E-genes
(Supplementary Fig. 15).
Controversial findings have been reported for roles of EMT in

cancer metastasis.51–54 Accumulating evidence supports that
sequential induction of EMT and its reverse process
mesenchymal-to-epithelial transition (MET) allows cancer cells
enter into the systemic circulation and subsequently colonize at
distant organs.2,55 On the other hand, other studies suggested
that cancer metastasis is often caused by circulating clusters of
epithelial tumor cells and that EMT is dispensable for this
process.52,53 These conflicting findings suggest two modes of
spreading processes of cancer cells: migratory and invasive
properties of individual cancer cells that are related to EMT
phenotypes and collective cell migration which occurs without
losing epithelial integrity. The latter type of collective migration
may not fit with the classical linear lineage progression definition
of EMT. In fact, recent theoretical work suggests the importance of

Fig. 6 Mathematical modeling of EMT under control of TGF-β and ZEB1. a–d Top diagrams: influence diagrams for gene regulatory networks
under four conditions. Lower panels: bifurcation diagram for four types of genes (E, M1, M2, and M3) with respect to exogenous TGF-β and
ZEB1 expression under two conditions. Solid curves represent stable steady states. Dashed curves represent unstable steady states. Color
gradient represents the position in the EMT spectrum, which is calculated by adding the expression of the three M nodes and subtracting the
expression of the E node. a Normal condition. Induced by TGF-β. b ZEB1 KO. Induced by TGF-β. c Normal condition. Induced by ZEB1. d TGF-
β-inhibited condition. Induced by ZEB1. e Simulation for expression of VIM and E-cad upon treatment and withdrawal of TGF-β. Top: control.
Bottom: ZEB1 KO after TGF-β withdrawal. f Expression of VIM and E-cad analyzed by FACS upon treatment and withdrawal of TGF-β. Top:
control. Bottom: ZEB1 knockout induced by DOX. Cells were treated with TGF-β for 2 weeks and then subject to TGF-β withdrawal, and (for the
experiment group) to ZEB1 knockout. g Simulations for expression of VIM and E-cad upon treatment and withdrawal of exogenous ZEB1
expression followed by inhibition of TGF-β signaling. h Expression of VIM and E-cad analyzed by FACS upon induction and withdrawal of
exogenous ZEB1 by DOX. Exogenous ZEB1 was induced for 1 week and then subject to the withdrawal of the induction signal for 2 weeks,
and (for the experiment group) to the inhibition of TGF-β signal by SB431542 (SB) for the same period

K. Watanabe et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)     1 



hybrid EMT states for circulating tumor cell clusters.56 Our findings
suggest that E and M phenotypes are not necessarily regulated in
a reciprocal manner and that EMT process can be flexibly reversed
in these cells. It has been suggested that such plastic states are
related to cancer stem cell phenotypes.7,15,57 In addition, our
finding on the causal influence of ZEB1 on key EMT genes, such as
SNAIL and TWIST1/2, provides a possible explanation for the
differential effects of knocking out ZEB1, SNAIL, and TWIST in
mouse model of pancreatic cancer.16,53 ZEB1 was considered a
gene downstream of SNAIL and TWIST,58,59 and our results show
that ZEB1 can be a key regulator broadly influencing M-genes,
including SNAIL and TWIST. Furthermore, several reports sug-
gested that sequential activation of EMT and MET promotes
reprograming or differentiation of cell lineages including iPS,
neurons, or hepatocyte lineages.60,61 Our study provides a
possible molecular basis for such plastic transition of cellular
state and manipulating the balance between the two inhibitory
networks may be useful to develop new treatment for diseases or
novel cell conversion methods.
Previous mathematical models and experiments showed the

existence of intermediate EMT states in silico, in vitro, and
in vivo.4–6,49 In contrast, the model and the experiment presented
in this study focus on the diversity of M-genes in terms of their
connectivity with TGF-β and ZEB1, as well as the role of ZEB1 in
controlling reversibility and reciprocity of EMT. However, the
model does not describe the intricate feedback loops in the EMT
transcriptional network. These feedback loops were shown to be
critical for the formation of intermediate cell states.4,47,62 There-
fore, the current model has limited predictive power in terms of
the detailed transitions involving intermediate EMT states. In
particular, the bifurcation point shown in Fig. 6a–d may be
decomposed into several consecutive switches that govern the
critical transitions of different E-genes or M-genes. Future work is
needed to integrate different elements of the EMT control circuits
into a unified model to analyze the system in a more
comprehensive manner. In addition, previous models predicted
discrete states between E and M phenotypes,4–6,32,47 whereas our
model and another EMT model by Celià-Terrassa et al.48 suggest
that continuous EMT phenotypes may be observed with increas-
ing EMT signals. Distinguishing these two scenarios requires future
experiments. Nonetheless, our model and experiment demon-
strated the existence of hybrid EMT state at which both E-genes
and M-genes are upregulated. It is unclear whether the
‘intermediate’ states can be distinguished from the ‘hybrid’ states
under physiological conditions, and whether the intermediate
phenotypes observed in vivo are transitional cells ready to commit
to the destination states, or those unable to make the complete
transition due to genetic or environmental perturbations and
likely to be reverted to the initial states. More modeling work and
single-cell experiments are warranted to address these questions,
and the insights into these problems will help elucidating the
functional roles of the intermediate or hybrid EMT states.63

Our study provides a holistic view of the roles of ZEB1 and its
interplay with TGF-β signaling at transcriptomic level. We found
the key roles of ZEB1 in regulating both the reciprocity and
reversibility of EMT, and we identified three classes of mesench-
ymal genes that are controlled by three different types of
regulatory circuits downstream of TGF-β and ZEB1. These results
shed light into the complex molecular mechanisms for regulating
EMT, and they are useful for the understanding of the diversity of
EMT phenotypes observed in many physiological and pathological
conditions.

MATERIALS AND METHODS
Cell lines
MCF10A cells (ATCC) were grown in DMEM/F12(1:1) medium with 5%
horse serum, epidermal growth factor (10 ng/mL), cholera toxin (100 ng/

mL), and insulin (0.023 IU/mL). For TGF-β treatment, cells were incubated
with titrated concentrations of human TGF-β1 protein (R&D systems) in the
complete culture medium. The culture medium was replaced daily, and
cells were passaged right before reaching full confluency.

CRISPR/Cas9-mediated ZEB1 deletion
CRISPR/Cas9-mediated genome editing of ZEB1 locus was performed using
lentiviral gRNA expression system with lentiGuide-Puro (a gift from Feng
Zhang Addgene plasmid #52963) and lentiCas9-Blast (a gift from Feng Zhang
Addgene plasmid #52962). For inducible Cas9 expression and genome
editing, Lenti-X™ Tet-One™ Inducible Expression System (Clontech) was used.
Production of lentiviruses was carried out as previously described.64 Two
gRNA sequences were used to delete ZEB1 expression; TGAAGACAAACTG-
CATATTG (tgg: PAM sequence) and CAGACCAGACAGTGTTACCA (ggg: PAM
sequence), and the following gRNA sequences were used as controls:
ACCAGGATGGGCACCACCC and GGCCAAACGTGCCCTGACGG. For ZEB1 KO
clones, two clones (clone 2 and clone 5) were established showing complete
absence of ZEB1 protein upon TGF-β stimulation (Supplementary Fig. 2). As
the morphology, proliferation rates, and gene expression patterns are similar,
we chose to use clone 5 for the following studies. This clone contained
homozygous 370-bp deletion in Intron1–Exon 2 boundary which results in
exon skipping and frameshift (Supplementary Fig. 1).

Inducible expression of ZEB1 protein
Puromycin-resistant Tet-based inducible cDNA expression system (pSLIK-
Puro) was engineered by replacing the hygromycin-resistant gene in
pSLIK-Hygro vector (a gift from Iain Fraser, Addgene plasmid # 25737) with
a puromycin-resistant gene obtained from lentiGuide-Puro by PCR
amplification. Mouse Zeb1 cDNA was digested from the pHIV-ZsGreen-
Zeb1 lentiviral construct64 and cloned into the pSLIK-Puro vector.
Production and infection of lentivirus were carried out as described
above. Induction of the transgene was performed by DOX treatment at a
concentration of 500 ng/mL.

EMT reporter and flow cytometry
The EMT reporter was engineered by removing the puromycin-resistant
gene from a TCGP-Puro lentiviral EMT reporter system, which contains E-
cad promoter-driven eGFP and VIM promoter-driven mCherry (a kind gift
from Kiyotsugu Yoshikawa). The EMT reporter-expressing MCF10A clone
was established by infection and FACS sorting of eGFP-positive cells,
followed by serial dilution cloning. Several clones were screened by flow
cytometry and clones that showed most distinguishable FACS profiles
before and after TGF-β treatment was selected for the downstream
analyses. Flow cytometry was performed on a BD FACSAria equipped with
FACS DiVa6.0 software operating. Cell clusters and doublets were
electronically gated out. Positive and negative gates for eGFP and mCherry
fluorescence were determined using untreated and ZEB1-induced MCF10A
cells as controls.

RT-PCR
Total RNA was isolated using the TRIzol Reagent (Invitrogen) followed by
cleaning up and RNase-free DNaseI treatment using the RNeasy mini kit
(QIAGEN). cDNA was prepared using Retroscript Kit (Applied Biosystems)
according to manufacturer’s instructions. Real-time PCR was performed
using using a StepOnePlus™ real-time PCR system (Thermo Fisher), with
SYBR Premix Ex Taq™ II (Takara). Comparative analysis was performed
between the genes of interest normalized by the house keeping genes
GAPDH and ACTB. The primer sequences used in this study are described in
Supplementary Table 8.

Cap analysis of gene expression
CAGE libraries were prepared as previously described.17 Briefly, 3 μg of
total RNA from each sample were subjected to reverse transcription, using
SuperScript III Reverse Transcriptase (Thermo Fisher) with random primers.
The 5-end cap structure was biotinylated by sequential oxidation with
NaIO4 and biotinylation with biotin hydrazide (Vector Laboratories, USA).
After RNase I treatment (Promega, USA), the biotinylated cap structure was
captured with streptavidin-coated magnetic beads (Thermo Fisher). After
ligation of 5′ and 3′ adaptors, second-strand cDNA was synthesized with
DeepVent (exo−) DNA polymerase (New England BioLabs, USA). The
double-stranded cDNA was treated with exonuclease I (New England
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BioLabs) and purified. The resulting CAGE libraries were sequenced using
single-end reads of 50 bp on the Illumina HiSeq 2500 (Illumina, USA). The
extracted CAGE tags were then mapped to the human genome (hg38).
After filtering low-quality reads, mapped CAGE tags were counted
regarding FANTOM5-CAT TSSs,18 providing a unit of CAGE tag start site.
The tags per million (tpm) were calculated for each TSS peak and
computed as gene expression levels for multiple TSS peaks associated with
a single gene. Differentially expressed genes were identified using QL F-
test implemented by EdgeR, followed by false discovery rate (FDR) control
with Benjamini–Hochberg method.

Clustering EMT genes with a semi-supervised approach
For the unsupervised step, two approaches were used to cluster EMT
genes based on the logFC of expression under the eight contrast
conditions described in Table 2. logFC data was row-scaled to adjust for
the large difference in average expression across EMT genes. Both
approaches were implemented in the R programming language. In the first
approach, a matrix of distances between annotated E-genes and M-genes
was calculated based on logFC expression data using the ‘dist’ function
with the Euclidean method. The ‘hclust’ function was then used to
generate the dendrogram seen in Supplementary Fig. 5. In the second
approach, we use the ‘som’ function, which is part of the kohonen
package,65 to map EMT genes onto a 10 × 10 grid of hexagonal cells. SOM
were performed using the ‘som’ function. The full data set was presented
to the network 1000 times during the learning process and the learning
rate was set to decline linearly from 0.05 to 0.01 over the course of the
learning process. From the final grid, we selected nodes which
predominantly (2:1) consisted of M-genes (this supervised method is
essentially a k-nearest-neighbors algorithm). We then clustered these
selected nodes using the hierarchical clustering method described above,
replacing logFC data with the codebook vectors describing each node. The
‘cutree’ function was used to derive clusters from the resulting
dendrogram and we selected four as optimal numbers of clusters using
the within cluster sums of squares error using the elbow criterion
(Supplementary Fig. 6).

Identifying enriched GO annotations in M-genes
GO annotations were obtained from Gene Ontology Consortium.66 The
significance of enrichment of individual terms in each of the M-gene
clusters was evaluated using Fisher’s exact test, and multiple test
correction was implemented using the Benjamini–Hochberg correction.

Survival analysis
Survival analysis was performed with KM-plotter.36 Patients of all breast
cancer types were selected. Out of 735 EMT genes, probes for 720 genes
were identified and analyzed. Medium survival months for high expression
and low expression cohorts, as well as the p values for the significance of
their differences, were obtained from the website. We corrected the
p values using Benjamini–Hochberg procedure with FDR of 0.05. Genes
without significant difference in survival months were discarded for
subsequent analysis (assuming zero difference for these genes produced
very similar results). Differences in survival months for genes in each M
clusters were aggregated, and t-tests were performed to compare means
of the differences to 0.

Statistical tests and boxplots
Unless otherwise indicated, all p values were obtained with two-sided t-
test assuming unequal variances. Other tests include two-sided Fisher’s
exact test for count data and two-sided Mann–Whitney U-test for
continuous numerical data with distributions far from normal. In all
boxplots, center lines indicate median values, box heights indicate the
inter-quartile range of data, whiskers extend 1.5 times this range on either
side, and outliers are indicated by black dots.

Mathematical modeling
We used a gene regulatory network that is simplified from earlier models.4–
6 We incorporated the effector E-genes and three types of M-genes in the
network, and their regulations by TGF-β and ZEB1 are based on the
analysis from this study (Figs. 2 and 3). To describe the system
mathematically, we used a generic form of ordinary differential equations
(ODEs) suitable for describing both gene expression and molecular

interaction networks.67–71 Each ODE system in the model has the form:

dXi=dt ¼γi F σiWið Þ � Xið Þ

F σWð Þ ¼1= 1þ e�σWð Þ

Wi ¼ ω0
i þ

PN

j
ωj!iXj

 !

i ¼ 1; :::; N

(1)

Here, Xi is the activity or concentration of protein i. On a time scale 1=γi ,
XiðtÞ relaxes toward a value determined by the sigmoidal function, F, which
has a steepness set by σ. The basal value of F, in the absence of any
influencing factors, is determined by ω0

i . The coefficients ωj!i determine
the influence of protein j on protein i. N is the total number of proteins in
the network. All variables and parameters are dimensionless. One time unit
in the simulations corresponds to approximately 1 day.
To model the AND logic gate on M1 genes regulated by TGF-β and ZEB1,

we assumed that the total influences of TGF-β ωTGFβ!M1TGFβ
� �

on M1 and
ZEB1 ωZEB1!M1ZEB1ð Þ on M1 are both saturated at values less than �ω0

M1,
so that these signals do not activate M1 genes alone.
Steady-state analysis was performed by varying the parameters

representing exogenous TGF-β or ZEB1 production rate. The total value
of the state variables representing the M-genes (M1, M2, M3) was used to
quantify the M phenotype, and the value of the ‘E-genes’ was used to
quantify the E phenotype. The difference between the phenotype was
used to determine the position of the state in the EMT spectrum.
Parameter values were selected to fit to the observation that TGF-

β-induced EMT is irreversible under normal conditions. These values are
listed in Supplementary Table 9.

Imaging analysis
MCF10A cells were transduced with nuclear RFP-expressing lentivirus (LV-
RFP, a gift from Elaine Fuchs, Addgene plasmid #26001) and treated under
conditions listed in Table 1. Cell movement dynamics in 2D culture was
monitored and recorded by IncuCyte® for 40 h. Using binarized images,
cells were identified and tracked by a Fiji package TrackMate. Cell
trajectories longer than 24 frames (6 h) were used for analysis. Movement
analysis was performed using similar metrics described in an earlier
study.72 Instantaneous velocity was computed as vτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
, where

vx ¼ xτ � xτ�1ð Þ= tτ � tτ�1ð Þ. Here, xτ is the x coordinate at time τ, and
tτ � tτ�1 is the time inverval between frames (15min). The mean
instantaneous velocity was calculated for each cell, and they were
aggregated and compared across condtions. Scaled displacement was
calculated with SD ¼ x tendð Þ � x tstartð Þj j= tend � tstartð Þ, where x tstartð Þ and
x tendð Þ are the initial and final positional vectors of the trajectory,
respectively. Straightness index was calculated with

SI ¼ xi tendð Þ � xi tstartð Þð Þ=
Xtend

τ¼tstartþ1

xi τð Þ � xi τ � 1ð Þð Þ (2)

or the ratio of the distance between the initial and final positions for each
cell to the integrated distance traveled. The mean number of nearest
neighbors was computed for each cell in each frame by counting the other
cells within a 30 µm search radius. This value was then divided by the total
number of frames of each trajectory. These summary statistics of the
trajectories were compared between pairs of conditions listed in Table 2.
Mann–Whitney U-test was performed to obtain statisitcal significance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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