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Quantifying the landscape and kinetic paths
for epithelial–mesenchymal transition from
a core circuit†

Chunhe Li,*abc Tian Hongab and Qing Nie*ab

Epithelial–mesenchymal transition (EMT), as a crucial process in embryonic development and cancer

metastasis, has been investigated extensively. However, how to quantify the global stability and transition

dynamics for EMT under fluctuations remains to be elucidated. Starting from a core EMT genetic circuit

composed of three key proteins or microRNAs (microRNA-200, ZEB and SNAIL), we uncovered the

potential landscape for the EMT process. Three attractors emerge from the landscape, which

correspond to epithelial, mesenchymal and partial EMT states respectively. Based on the landscape, we

analyzed two important quantities of the EMT system: the barrier heights between different basins of

attraction that describe the degree of difficulty for EMT or backward transition, and the mean first

passage time (MFPT) that characterizes the kinetic transition rate. These quantities can be harnessed as

measurements for the stability of cell types and the degree of difficulty of transitions between different

cell types. We also calculated the minimum action paths (MAPs) by path integral approaches. The MAP

delineates the transition processes between different cell types quantitatively. We propose two different

EMT processes: a direct EMT from E to P, and a step-wise EMT going through an intermediate state,

depending on different extracellular environments. The landscape and kinetic paths we acquired offer a

new physical and quantitative way for understanding the mechanisms of EMT processes, and indicate

the possible roles for the intermediate states.

1 Introduction

Epithelial–mesenchymal transition (EMT) plays crucial roles in
embryonic development and cancer metastasis.1,2 Through
EMT, the phenotypes of cells undergo many changes, such as
losing cell–cell adhesion and cell polarity, and acquiring migra-
tory and invasive properties.3 Cells that have undergone EMT
sometimes revert back to the epithelial state. This mesenchymal–
epithelial transition (MET) enables the migratory cells to settle
and proliferate at a distant organ. The dynamic and reversible
behaviors of EMT are controlled by gene regulatory networks that
consist of some key molecules and their interactions in epithelial
and mesenchymal cells.4 EMT networks have been studied using
mathematical models,5–7 as a ternary switch circuit with a noise-
buffering integrator, or two cascading coupled bistable switches.
Interestingly, the networks enable the formation of a hybrid

epithelial–mesenchymal state, which is stable under certain
environmental conditions. It has been proposed that the hybrid
EMT phenotype is associated with invasiveness of cancer cells.5,6

In cells, there are intrinsic fluctuations due to limited
number of molecules and external fluctuations due to inhomo-
geneous environments.8–10 Noise has been shown to play
critical roles in cell fate decision processes during developmental
patterning.11–13 However, it is unclear what roles noise play in
the EMT networks, and it remains challenging to elucidate the
global properties of the EMT system, such as the global stability
of different states and associated dynamics under fluctuations.
The potential landscape theory might provide a route for addressing
these issues. Waddington14 proposed a landscape picture for
development and differentiation of cells, as a metaphor.
Recently the Waddington landscapes for development as well
as for cancer have been quantified.15–22 From the landscape
theory, different phenotypes can be depicted as the basins of
attraction on a potential surface, and the cell fate decision
process is viewed as a ball rolling down from one basin to
another on the landscape. Functional states correspond to high
probability or low potential states, and non-functional states
correspond to the low probability or high potential states.
The barrier heights between the attractors or basins quantify
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the degrees of difficulty for the cells to switch from one cell type
to another. In addition, an open question of the cell fate
decision is whether the noise (including extrinsic noise and
intrinsic noise) drives the transitions on a fixed potential
landscape or, alternatively, the noise acts in concert with an
exogenously altered potential landscape. This can be addressed
by investigating how the landscape shape changes as the key
parameters in the network (e.g. the synthesis or degradation
rate of genes, or regulatory strength among genes) and the
noise level are varied. The landscape theory as a metaphor
has been used as a pictorial illustration for EMT transitions
previously.6,23 However, a more rigorous and quantitative study
of EMT networks using the landscape theory is needed to gain
more insights into the EMT system.

It is understood that the cell fate determination among
three phenotypes (epithelial, partial EMT, mesenchymal cells)
is governed by a core regulatory circuit consisting of two
modules with four core components. There are two transcrip-
tion factors SNAIL and ZEB and two microRNAs (miRs) miR-34
and miR-200. The circuit is mostly determined by two cross-
inhibition feedback loops, miR-34/SNAIL circuit and miR-200/ZEB
circuit. For simplicity, we only consider one couple of mutual
repression, i.e. the regulation between the protein ZEB and the
microRNA miR-200, in this study (Fig. 1) SNAIL is treated as an
input for the network, which activates the ZEB transcription
factor. The two transcription factors SNAIL and ZEB promote
the expression of some mesenchymal marker genes, such as
N-cadherin and vimentin, and repress the expression of epithelial
marker genes, such as E-cadherin.24 Therefore, this core circuit is
expected to capture the major regulation and dynamics of EMT.

In this work, we aim to uncover the potential landscape
for epithelial–mesenchymal transition. We start from a core
EMT circuit (miR-200/ZEB) with 3 key genes or microRNAs.
We uncovered the underlying potential landscape for the EMT
process. Three attractors emerge on the landscape, and char-
acterize the epithelial, mesenchymal, and partial EMT states

(intermediate state), individually. We quantified the transition
processes between these cell types by identifying the minimum
action paths (MAP) among these three attractors. The forward
transition MAP (from E to M) and backward transition MAP
(from M to E) are not identical, indicating the irreversibility
caused by the non-zero probabilistic flux. We found that the
potential barriers for basins are correlated with the kinetic
transition rates among these cell types, quantified by the first
passage time (MFPT). We also construct a population-level state
transition model, which can be harnessed to compare with
experiments directly. Our landscape approach also indicates
possible explanation for the existence of intermediate states.
We propose two different EMT processes. In the condition with
a strong signal (e.g. TGFb signal or environment pressure),
the system might go from the E state to the M state directly.
In the condition with a weak signal, the system might make an
indirect transition, from E to P, and finally to the M state. This
provides a way to increase the plasticity of cell fate decision.

2 Results
2.1 Potential landscape and minimum action path (MAP) for
the EMT circuit

The probability evolution for a stochastic dynamical system can
be captured by the diffusion equations. For a 2-dimensional
system, the diffusion equation has the form:25,26

@P x1; x2; tð Þ
@t

¼� @

@x1
F1 x1; x2ð ÞP½ � � @

@x2
F2 x1; x2ð ÞP½ �

þD
@2P

@x12
þ @2P

@x22

� � (1)

Here P(x1, x2, t) is the probability evolution function, x1 and x2

represent the concentration of the micro-RNA miR-200 and the
protein ZEB, respectively, and F1 and F2 are the driving force for

variables x1 and x2 (F1 ¼
dx1

dt
and F2 ¼

dx2

dt
). The forms of F1

and F2 are shown in eqn (3) (see the Methods section). D is
diffusion coefficient matrix. In this work, we assume that D is
homogeneous and constant (the diagonal elements D11 = D22 = D
and the non-diagonal elements D12 = D21 = 0). In the current
work, we focus on the effects of external noises (environment
changes) on the EMT system, and apply the additive noise in our
model (the diagonal elements of the diffusion matrix are con-
stant). We have applied the landscape theory to different systems
under external noises16–18,22 and under intrinsic noises27 (mul-
tiplicative noise is used), separately. In mammalian cells, the
number of protein molecules is usually abundant. Therefore we
expect that the source of fluctuations is mostly from the
external noise rather than from the internal noise.

By solving the diffusion equations for the long time limit, we
obtained the steady state probabilistic distribution of the EMT
network. We take the zero flux boundary condition, i.e. n

:
Jss = 0,

where n indicates the unit normal vector of boundary. This
corresponds to the conservation of total probability. We used
COMSOL Multiphysics (version 4.3) to solve the diffusion

Fig. 1 The diagram for the core EMT circuit including 3 nodes (proteins or
microRNAs). Blue arrows represent transcriptional activation and red short
bars represent transcriptional or translational repression. Rectangular node
represents microRNA, and circle nodes represent proteins.
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equations.28 In this way, we mapped out the potential land-
scape for the EMT system (Fig. 2) by U = �ln(Pss).16–19,29–31

Here, Pss represents the probability distribution of the steady
state, and U is the dimensionless potential.

Fig. 2 displays a tristable landscape for the EMT system. The
blue region represents lower potential or higher probability,
and the red region represents higher potential or lower prob-
ability. Here, the three basins of attraction represent three
cellular phenotypes (E for epithelial, M for mesenchymal, and
P for the partial EMT state) respectively. From the landscape
point of view, the transition between different cellular types can
be understood as a ball rolling from one basin to the other by
surmounting certain barriers (saddle points).

We calculated the dominant kinetic transition paths between
different attractors by minimizing the transition action (see methods
to acquire the dominant transition path), which are also called

minimum action paths (MAPs). The MAPs for different transi-
tions are shown on the landscape (Fig. 2B). The white (from the
E state to the M state, EMT) and magenta (from the M state to
the E state, MET) lines represent the MAPs with arrows denoting
the directions of the transitions. We noticed that the MAPs do not
go through the corresponding saddle points exactly. This is because
the dynamics of non-equilibrium systems is not only determined
by the landscape gradient but also the curl flux.29,32,33

Both EMT and MET processes have been observed experi-
mentally by manipulating the TGF-b level.34,35 The MAP for
EMT and the MAP for MET are irreversible, reflected by the fact
that forward and reverse paths are not identical (Fig. 2B,
compare the white and magenta solid lines). The irreversibility
for EMT paths has also been found by other work.6 This
irreversibility of MAPs is a consequence of the non-gradient
force, curl flux.29,33 The MAP from E to M shows that the EMT
does not necessarily go through the P state (Fig. 2B, white solid
line), which might provide an explanation why experimentally
the partial EMT states cannot always be easily observed. In
addition, we observed that both EMT and MET processes are
initiated by rapid downregulation of the genes that are highly
expressed in the original state (e.g., the MET path, represented by
the magenta solid line, starts with rapid downregulation of ZEB).
This prediction in terms dynamics of key molecules can be
tested experimentally.

The dashed lines in Fig. 2B show the kinetic paths between
the intermediate P state and the E state as well as between the
P state and the M state. The MAPs acquired between E, P, and
M states show that the path from E, through P, to M (white
dashed line) is not the minimum action path for the EMT. In
other words, the minimum action path for EMT (white solid line)
does not go through the intermediate P state. One natural
question following this is why cells sometimes choose an EMT
transition path with a higher cost, or larger action, by switching
to P and then to M rather than going to M directly and how cells
manage to achieve it. One possibility is that this is one way for
cells to increase plasticity. A step-wise EMT from E, to P, then to
the M state, should correspond to the case in which the system
does not have strong enough signals to make complete EMT
transition (e.g., from weak TGF-b signal or limited environment
pressure). In this case, the system may first enter the inter-
mediate P state to stay for a while due to the limited driving
signals. Depending on the extracellular or metabolic condi-
tions, the system will decide whether it will further switch to M
to finish the EMT or will return back to the E state (purple dash
line from P to E). Therefore, the intermediate partial EMT state
increases the plasticity for EMT, and ensures the robustness of
EMT dynamics.

To answer the question how cells manage to follow the route
going through P, rather than the direct path (least action path),
we calculated the value of least actions for the transitions
among E, P, and M states (choice of parameters are corres-
ponding to Fig. 2), shown in Table 1. We found that although
the total transition action for the staged EMT (SE-P + SP-M =
2.36 + 6.79 = 9.15) is larger than the transition action of the
direct EMT (SE-M = 8.73), the first step of the staged EMT has

Fig. 2 The landscape and the corresponding kinetic paths for the EMT
network are shown in 3-dimensional (A) and 2-dimensional figures (B).
White lines represent the MAP for EMT, and the purple lines represent the
MAP for MET. The dashed lines represent the MAP between P and E states
as well as between P and M states. The parameters are set as: Snail = 200 K
molecules (thousand molecules). E: epithelial state, M: mesenchymal state,
P: partial EMT state.

PCCP Paper

Pu
bl

is
he

d 
on

 2
1 

Ju
ne

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Ir
vi

ne
 o

n 
26

/0
9/

20
16

 2
1:

44
:1

5.
 

View Article Online

http://dx.doi.org/10.1039/C6CP03174A


17952 | Phys. Chem. Chem. Phys., 2016, 18, 17949--17956 This journal is© the Owner Societies 2016

smaller action than the direct EMT (SE-P = 2.36 o SE-M = 8.73).
Therefore E state cells actually have very high probability to go to
the P state because the transition action from E to P is much
smaller than the transition action from E to M.

We found that for the reverse direction (MET), the difference
in MAPs between the direct and staged transitions is overall
less than the corresponding difference for the forward direction
(EMT) (Fig. 2B). This is supported by the calculation of transition
actions (Table 1). The difference of the transition actions between
direct and staged MET is actually very small, which can be quantified
by the relative change of actions ((SM-P + SP-E � SM-E)/
SM-E = 0.8%). In contrast, the relative change of actions for
the direct EMT and the staged EMT is (SE-P + SP-M � SE-M)/
SE-M = 4.8%. The similarity in the paths of direct and staged
MET suggests that the cells do not need to commit to one of
these paths at the early stage of transition, and they can decide
whether they need to revert to P or E even after the initiation of
differentiation. In the situation of EMT, the cells need to decide
whether they need to commit to P or M at the beginning of the
transition because the decision would be difficult to change
later. This indicates that the partial EMT has to be regulated
more precisely, because errors at the early stage may lead to
dramatic consequences later on.

2.2 Mean first passage time (MFPT) and potential barrier

For the current simplified EMT circuit, the SNAIL level represents
the major input signal. This is because SNAIL is the immediate
downstream signaling molecule of some external stimulations,
including TGF-beta.5,6 So, we explored the effects of the SNAIL
level on the landscape for EMT, as shown in Fig. 3. As the SNAIL
level increases, the landscape switches gradually from a stable
E state to a P and M coexisting state, to tristability, and finally to a
stable M state. A strong SNAIL level promotes the transition of
cell types from epithelial inclined cells to mesenchymal inclined
cells, which is indicated by the change in landscape topography.

We also explored the effects of the noise level (characterized
by the diffusion coefficient D) on the landscape. As the noise
level increases (Fig. 4), the landscape becomes more and more
widely distributed, and the attractors become less stable. When
the noise is very large, the E state disappears, and only the P
state and the M state exist. This suggests a possibility that noise
can work in concert with the altered potential landscape and
induce EMT transitions.

The stability of the dynamical system is relevant to the
escape time from the basins of attraction. For the probabilistic
description of the network using diffusion equations, the mean
first passage time (MFPT) t(x) starting from a state x is determined

by19,26 F�rt + Drt�D�rt = �1. It reflects the average time for a
transition from an initial state to a given final state. In the final
state an absorbing boundary condition (t = 0) is taken, and for
the outer boundary a reflecting boundary condition n�rt = 0
is taken.

By solving the above partial differential equation numeri-
cally, we calculated the MFPT from one attractor to another
(Fig. 5A and B). As the level of SNAIL increases, the MFPT for
EMT decreases gradually and the MFPT for MET increases
gradually (Fig. 5A). This behavior arises because SNAIL pro-
motes EMT through activating the ZEB transcription factor
as well as inhibits micro-RNA miR-200, therefore making the
transition time of EMT shorter. Fig. 5B shows that as the
SNAIL level increases, the MFPT from E to P increases and
the MFPT from P to M decreases (Fig. 5B). This indicates that
SNAIL promotes EMT mostly by affecting the second half stage
(the stage from P to M).

To quantify the stability of the system based on the land-
scape topography, we define the barrier height as the potential
difference between the local minimum and the saddle point.
The barrier height can also be defined as the potential difference
between the local minimum and the global maximum along the
MAP by considering the effects of the probabilistic flux.32

A larger barrier means that it is harder for the system to cross

Table 1 Least actions for the transitions among E, P, and M states. The
transition actions are represented by a 3 � 3 matrix S, with Sij representing
the least action from state i to state j. N denotes not applicable

Sij E state P state M state

E state N 2.36 (SE-P) 8.73 (SE-M)
P state 2.48 (SP-E) N 6.79 (SP-M)
M state 8.75 (SM-E) 6.34 (SM-P) N

Fig. 3 The landscape at different Snail levels. The unit for S (SNAIL level) is
K molecules (thousand molecules). The blue region represents higher
probability, and the red region represents lower probability.

Fig. 4 The landscape at different diffusion coefficients D, quantifying
different noise levels. The blue region represents higher probability, and
the red region represents lower probability.
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the barrier and switch from one basin to another. Therefore, the
barrier height provides a quantitative measure for the global
stability for the EMT system. To investigate the relationship
between MFPT and barrier height, we focus on a specific
transition process, i.e. the transition from the partial EMT state
to the M state. The good correlation between MFPT and barrier
height (Fig. 5C) is reasonable because the larger barrier makes it
harder for the system to escape from one basin, and therefore
leads to a larger switching time. This implicates that the
potential barrier from landscape topography and the MFPT
provide quantitative measures for the global stability of the
EMT system.

Based on the landscape and MFPT, our model predicts that
the larger SNAIL level leads to less transition time from the
E state to the M state (Fig. 5A). This is partially supported by the
experiments indicating that SNAIL promotes EMT by activating
the TGFb signal.36 Our results also predict that the switching
time from E to P increases while the switching time from P to M
decreases as the SNAIL level increases (Fig. 5B). This suggests
that SNAIL promotes EMT mostly by speeding up the transition
from the P (partial EMT) state to the M state. This prediction
can be tested by future experiments.

From the MFPT we acquired, we estimated the transition
rate (inverse of the MFPT) between different attractors (cell
types). We further constructed a Markov cell state transition
model (ESI†) to calculate the population evolutions for cells.
The landscape and the population model predict that as the
SNAIL signal is strengthened, the steady state proportion for
E state cells and P state cells decreases and the steady propor-
tion for M state cells increases (Fig. 5D). This prediction is
consistent with the landscape results (Fig. 3), and can be
tested experimentally. We have summarized the predictions
from our model and some possible validations from experiments
in Table 2.

3 Discussion

The epithelial–mesenchymal transition play critical roles in
embryonic development and cancer metastasis.2 A core circuit
for EMT (miR-200 and ZEB cross-inhibition feedback loop) has
been investigated both experimentally and theoretically. How-
ever, learning the global properties for the EMT system is still
challenging, particularly using deterministic approaches.

In this work, based on a simplified miR-200/ZEB model
considering the microRNA regulation in detail, we uncovered
the potential landscape for this system. We introduced the
stochastic description for the network, and solved the prob-
ability evolution diffusion equations. The landscape for EMT
displays three basins of attraction, which corresponds to three
different phenotypes: epithelial (E), mesenchymal (M), and
partial EMT states (P). In the process of EMT, some intermediate
state cell types have been observed including partial epithelium
and partial mesenchyme.2 The partial EMT in adult epithelial
tissues is also seen as the sign of tumor initiation.37,38 In our
landscape picture, the P basin on the landscape corresponds to
these intermediate (partial EMT) states, and the transition from
E to P or from M to P represents the partial EMT transition. We
quantified the MAP as the kinetic paths for the transitions
between these three attractors. The irreversible nature of MAPs
embodies the effects of the non-equilibrium curl flux.29,33,39

We also calculated the switching time between different cell
types, characterized by the mean first passage time (MFPT).
The SNAIL promotes EMT mainly by influencing the transition
from P to M, i.e. the increase of the SNAIL level speeds up the
switching from P to M. To quantify the landscape change, we
define the potential barrier. The barrier has a positive correla-
tion with the MFPT, indicating that it can serve as a quantita-
tive measure for the relative stability of different basins in the
EMT system.

By estimating the transition rate among different cell types
from MFPT, we expanded our cellular level model to a state
transition model in the level of cell population. The population
model provides a way to make comparisons with experiments
directly. It would also be interesting to incorporate the effects of
selection pressure (different proliferation rates for different cell
types) to the population model and see the influence of selec-
tion pressure on the EMT process.

Fig. 5 (A and B) MFPT for EMT and MET transitions at different Snail levels.
(C) Barrier versus MFPT from the P state to the M state. (D) Cell percentage
for three phenotypes at steady states from the state transition model at
different Snail levels. K molecules: thousand molecules.

Table 2 Model predictions and experimental supports

Model predictions
Supporting
references

Forward and reverse paths for EMT are not identical
(Fig. 2B)

Ref. 6

EMT starts with rapid downregulation of miR-200
(Fig. 2B)

Prediction

MET starts with rapid downregulation of ZEB (Fig. 2B) Prediction
Increasing the SNAIL level leads to faster EMT (Fig. 5A) Ref. 34
Increasing the SNAIL level leads to slower transition from
E to P and faster transition from P to M (Fig. 5B)

Prediction

As the SNAIL level is increased, E state and P state cell
population decreases and M state cell population
increases (Fig. 5D)

Prediction
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The partial EMT or intermediate states have been suggested
to play important roles in various biological processes, for
example, during wound healing, cells at the border of the
wound experience a partial EMT process.1 These intermediate
cell types move as maintaining loose contacts rather than
migrating as individual cells. Our landscape picture provides
some hints on the roles of intermediate states (P state here).
The transition for EMT (from E to M) is usually driven by
signals (e.g. TGFb signal or environment pressure), since it
needs to cross different potential barriers on the landscape.
However, if in some case the system does not have a strong
enough driving signal, the intermediate state might be valu-
able. For example, the system can first switch from the E to P
state and stay there for a while (because at this time the signal
is not strong enough to drive the system going to M directly),
and make further switch from the P to M state or going back to
the E state at other times, depending on the environments.
Therefore, the intermediate states increase the plasticity of
cell fate determination, and increase the robustness of EMT
dynamics.

Recent evidence suggests that cells undergoing EMT gain
stem cell-like properties, thus giving rise to cancer stem cells
(CSCs).40–42 This suggests that ZEB, an EMT marker gene, also
promotes the formation of CSCs. CSCs are highly tumorigenic
cell types and are suggested to play important roles in oncogenesis
due to their abilities of initiating tumors and driving meta-
stasis.43,44 It has been hypothesized that the frequent recurrence
of cancer after chemotherapy or radiotherapy is due to the CSCs
not being removed in these treatments.45 In our landscape
picture, the M attractor, marked by the activation of the ZEB
gene, can be close to some CSC attractors in some higher-
dimensional gene expression state spaces. When the cancer cells
or normal cells undergo an EMT, they not only initiate meta-
stasis, but also promote the formation of CSCs. Therefore,
our results also suggest that the ZEB and relevant microRNA
(miR-200) may serve as potential anti-cancer targets by blocking
the EMT process or forming CSCs.

The simplified network used in this study is the minimum
motif that governs a tristable EMT system. Our investigation on
the transitions driven by both noise and external control of the
landscape provided new physical insights for understanding
quantitatively the mechanisms of EMT, which is not discussed
in the previous studies focusing on the deterministic models.5–7

We expect that most of our conclusions are valid for more
complete EMT networks. However, more complex networks6,23,46

involve more molecular details, which may influence the
dynamics of the EMT system. For example, a recent work
suggests that the mutual repression between OVOL2 and ZEB
are critical to the multi-step EMT transitions.23 Understanding
the mechanisms of those multi-step transitions in the larger
networks using landscape theory will be the topic of future
studies. We anticipate that by exploring the landscape and
paths of these networks, one can obtain more information on
the mechanisms of the EMT process as well as cancer meta-
stasis. This will facilitate the development of new strategies
for cancer prevention or treatment. Our method can also be

applied to other genetic circuits, to study their stochastic
dynamics and kinetic transition paths.

4 Methods
4.1 Model of the EMT network

EMT modeling has been performed both deterministically and
stochastically in some recent studies.5,6 Lu et al. developed a
theoretical framework to explore the micro-RNA translation-
transcription regulation dynamics.5 It is believed that the three
phenotypes are determined by a core regulatory unit consisting
of four core components, two transcription factors SNAIL and
ZEB and two microRNAs (miRs) miR-34 and miR-200. The
circuit is mostly determined by two mutually repressed feed-
back loops. For simplicity, we only consider one couple of
mutual repressed genes, ZEB and miR-200 (Fig. 1). SNAIL is
treated as an input for the network, which promotes the
activation of ZEB. The two transcription factors SNAIL and
ZEB promote the expression of some mesenchymal marker
genes, such as N-cadherin and vimentin, and repress the
expression of epithelial marker genes, such as E-cadherin.24

Starting from the topology of the network, we can write
down the ordinary differential equations (ODEs) that govern
the time evolution of variables (gene expression level or protein
concentration). With the Hill function describing the activation
or repression regulations, the ODEs have the following form:

m
:
200 = g1 � HS(ZEB, lZ1) � HS(S, lS1) � mZEB � Ym(m200)

� k1 � m200

m
:
ZEB = g2 � HS(ZEB, lZ2) � HS(S, lS2) � mZEB � Ym(m200)

� k2 � mZEB

Z
:
EB = g3 � mZEB � L(m200) � k3 � ZEB (2)

Here, m200 denotes miR-200, mZEB denotes mRNA of ZEB,
and ZEB represents the ZEB protein. In addition, g1 and g2 are
the basal synthesis rate for miR200 and mZEB respectively, k1,
k2 and k3 are the constant degradation rates of miR200, mZEB
and ZEB respectively, and g3 is the translation rate of protein
ZEB for each mRNA in the absence of microRNAs. The transla-

tion rate L(m) is defined as LðmÞ ¼
Pn
i¼0

liC
i
nM

i
nðmÞ, the mRNA

active degradation rate Ym(m) is defined as

YmðmÞ ¼
Pn
i¼0

rmiC
i
nM

i
nðmÞ, and the miR-200 active degradation

rate is defined as YmðmÞ ¼
Pn
i¼0

ruiC
i
nM

i
nðmÞ. li is the individual

translation rate, rmi and rui are the individual active degradation
rates for mRNA and microRNA, where Mi

n(m) = (m/m0)i/(1 + m/m0)n.5,47

Here HS is the shifted Hill function, defined as HS(B, l) =
H�(B) + l � H+(B), H�(B) = 1/(1 + (B/B0)nB), H+(B) = 1 � H�(B).
l is the fold change from the basal synthesis rate due to protein
ZEB. l 4 1 represents activations and l o 1 represents
repressions. nB is the number of binding sites for different
regulations. The SNAIL level S serves as the external input
signal for the EMT circuit. We followed the previous work for
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the parameter selection (Tables 3 and 4), and the number of the
binding sites for miR-200 regulations to ZEB mRNA was chosen
to be n = 6.5

The degradation rate of mRNA has been shown to be much faster
than that of proteins and microRNAs,48 so we assume that mRNA
can reach quick equilibrium. By setting F2 = d(mZEB)/dt = 0, we can
obtain mZEB = g2� HS(ZEB, lZ2) � HS(S, lS2)/(Ym(m200) + k2), and
further reduce the 3-variable equations to 2-variable equations for
m200 and ZEB:

m
:
200 = g1 � HS(ZEB, lZ1) � HS(S, lS1) � mZEB � Ym(m200)

� k1 � m200

Z
:
EB = g3 � g2 � HS(ZEB, lZ2) � HS(S, lS2)/(Ym(m200) + k2)

� L(m200) � k3 � ZEB (3)

Writing the equations governing the dynamics of the EMT

system in the vector form as
dx

dt
¼ FðxÞ þ ZðtÞ, where the F(x) is

the driving force for the system. For the stochastic system, the
system is determined by probability distributions. The prob-
ability distribution follows master equations for the discrete
case and diffusion equations for the continuous case. In con-
tinuous representation, the diffusion equations governing
probability evolution can be written as qP(x,t)/qt + r�J(x,t) = 0,
where the probability flux J takes the form J(x,t) = F(x)P(x,t) �
DrP(x,t).

Biological systems are usually open systems exchanging energy
and materials with environments, and form a non-quilibrium
steady state (NESS). One of the distingushed characteristics of a
NESS is the nonzero flux in the system.49 So the driving force
F can be decomposed to two terms (F = �D�rU + Jss/Pss), the
potential gradient U and the probability flux J with divergence-
free nature.

4.2 Kinetic path from path integral

In the cells, there exist intrinsic noise from statistical fluctua-
tions of the finite number of molecules, and external noise from
highly dynamical and inhomogeneous environments. Both of
them can be significant to the dynamics of the system.8–10

Therefore, one needs to study the cellular network dynamics
under fluctuating conditions in order to model the cellular inner
and outer environments realistically. A network of chemical
reactions in fluctuating environments can be addressed by
:x = F(x) + z, where x = (x1(t), x2(t),. . ., x6(t)) represents the vector
of protein concentrations or gene expression levels. F(x) is the
vector for the driving force of chemical reactions or gene regula-
tions. z is the Gaussian noise term satisfied with: hzi(x,t)i = 0 and
hzi(x,t)zi(x,t0)i = 2Dijdijd(t � t0) (dij = 1 for i = j, and dij = 0 for i a j),
where d(t) is the Dirac delta function and D is the diffusion
coefficient matrix.

The dynamics for the probability of starting from an initial
configuration xinitial at t = 0 and ending at a final configuration
xfinal at time t, in terms of the Onsager–Machlup functional, can
be formulated15,50 as

P xfinal; t; xinitial; 0ð Þ ¼
ð
Dx exp �

ð
dt

1

2
r � FðxÞ þ 1

4
ðdx=dt

��

�FðxÞÞ � 1

DðxÞ � ðdx=dt� FðxÞÞ
��

¼
ð
Dx exp½�SðxÞ� ¼

ð
Dx exp �

ð
LðxðtÞÞdt

� �
:

Here, D(x) is the diffusion coefficient matrix. The integral over
Dx denotes the sum over all possible paths from the state xinitial

at time t = 0 to the state xfinal at time t. The exponent factor gives
the weight of each path. Thus, the probability of network
dynamics from the initial state xinitial to the final state xfinal is
equal to the sum of all possible paths with different weights.
S(x) is the transition action and L(x(t)) is the Lagrangian or the
weight for each path.

The path integrals can be approximated with a set of dominant
paths, since each path is exponentially weighted, and the other sub-
leading path contributions are often small and can be neglected.
So, the dominant path with the optimal weight can be acquired
through minimization of the action or Lagrangian. In our case, we
identify the dominant paths as the biological paths for EMT.
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