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Abstract At least four distinct lineages of CD4™ T cells play diverse roles in the
immune system. Both in vivo and in vitro, naive CD41 T cells often differentiate into
a variety of cellular phenotypes. Previously, we developed a mathematical framework
to study heterogeneous differentiation of two lineages governed by a mutual-inhibition
motif. To understand heterogeneous differentiation of CD4™ T cells involving more
than two lineages, we present here a mathematical framework for the analysis of
multiple stable steady states in dynamical systems with multiple state variables inter-
acting through multiple mutual-inhibition loops. A mathematical model for CD4*
T cells based on this framework can reproduce known properties of heterogeneous
differentiation involving multiple lineages of this cell differentiation system, such as
heterogeneous differentiation of Ty1-Ty2, Ty1-Ty17 and iTreg—TH 17 under single
or mixed types of differentiation stimuli. The model shows that high concentrations
of differentiation stimuli favor the formation of phenotypes with co-expression of
lineage-specific master regulators.

Keywords CD4* T cells - Cell differentiation - Mathematical model
1 Introduction

Immune responses are often complex in terms of the types of cells involved and the
biochemical activities elicited in pathogenic events. To achieve accurate regulation of
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various types of responses, the immune system has evolved delicate control mecha-
nisms, including the differentiation of various subsets of CD4* T cells (Luckheeram
et al. 2012), which play diverse and important regulatory roles in immune responses.
The best known subsets of CD4™ T cells are T helper 1 (Tg1), T helper 2 (Ty2), T
helper 17 (Ty17) and induced regulatory T (iTreg) cells (Zhu et al. 2010). Each subset
has a unique key transcription factor, known as a master regulator, which controls the
lineage specification. The master regulators for the four subsets are T-bet, GATA3,
RORYt and Foxp3, respectively (Fontenot et al. 2003; Ivanov et al. 2006; Szabo et al.
2000; Zheng and Flavell 1997). The progenitor cells of all four types of CD4™ cells
are known as naive CD4™ T cells. Once these cells are activated by antigen presen-
tation and cytokines, they differentiate into functional CD4™" T cells. The key event
of differentiation is the up-regulation of at least one master regulator (O’Shea and
Paul 2010). The identities and strengths of the environmental cues, i.e., the exogenous
signals, determine the lineage of the differentiated cell. For example, interleukin 12
(IL-12) induces naive T cells to differentiate into Ty 1 cells in the presence of antigenic
agents that activate their T cell receptors (TCRs) (Hsieh et al. 1993).

It is not surprising that most immune responses elicit balanced phenotypes of
CD4™" T cells (Murphy and Stockinger 2010; O’Shea and Paul 2010). Interestingly,
even under uniform exposure of a single pool of naive CD4™ T cells to a specific
combination of exogenous signals, multiple lineages of differentiated T cells may
arise. Such ‘induced’ heterogeneous differentiation suggests that balanced immune
responses observed in vivo may not be due solely to heterogeneous microenviron-
ments of the cells. Rather, specific regulatory mechanisms may be responsible for
heterogeneous types of differentiation.

Previously, we developed a mathematical framework for analyzing heterogeneous
differentiation involving two master regulators (Hong et al. 2011, 2012). However,
cross talk among all four master regulators is important for the specification of CD4™
T cell lineages. Some recent mathematical models for CD4™ T cells have included sig-
naling networks with more than two master regulators, and they can be used to explain
the differentiation of naive CD4™1 T cells into each of the four lineages (Mendoza 2013;
Naldi et al. 2010). However, these models do not explain how naive CD4t T cells
can differentiate heterogeneously into combinations of the four lineages. Moreover,
the lack of analytic tools for multi-stability behaviors governed by complex mutual-
inhibition relationships has limited our understanding of this differentiation system.
Here, we present a framework that can be used to study multi-stability behavior involv-
ing networks with multiple interconnected mutual-inhibition motifs involving three or
four master regulators. We use this framework to build a model of CD4™ T cell differ-
entiation with four master regulators and to explain the heterogeneous differentiations
that involve these regulators.

2 Results
2.1 A Threefold Symmetrical Differentiation System

Building on our previous studies of the interactions of two master regulators (Hong
et al. 2011, 2012), we first analyzed a signaling network motif with three master
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Fig. 1 Analysis of a motif with three master regulators. a Influence diagram of the model. b Bifurcation
diagrams with respect to S1. Solid curves stable steady states. Dashed curves: unstable steady states. Vertical
gray lines: references to stability analysis with specific control parameter values shown in following sub-
figures. c—f Radar plots: representation of stable steady states. In each radar plot, expression levels of master
regulators are plotted on the axes. Bar charts: the phenotypic composition of a simulated cell population at
tend = 7 (Color figure online)

regulators, X, Y and Z. Each pair of master regulators interacts by mutual inhibition,
and each master regulator activates its own production. A differentiation signal S1,
which represents the antigenic stimulus, activates the production of all three master
regulators (Fig. 1a). We start with a set of basal parameter values (Supplementary
Table S1) that correspond to symmetrical interactions among all three components.
The bifurcation diagram (Fig. 1b) for the differentiation signal S1 reveals that the
system has one stable steady state for 0 < S1 < 1.8 (e.g., Fig. 1b vertical line C).
This state corresponds to the naive cell, since all three master regulators are expressed
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at low levels (Fig. 1c, radar plots). When a population of cells was simulated with the
indicated amount of signal S1, all cells in the population were still in the naive state
at the end of the simulation (Fig. 1c, bar chart).

At S1 = 2, there occurs a subcritical pitchfork bifurcation with threefold symme-
try: The system changes from one naive state (Fig. 1c) to three single-positive stable
steady states (Fig.1d) and four other unstable steady states (not shown; we focus on
analyzing stable steady states in this study). In the range 1.8 < S1 < 4.5, the sys-
tem is tri-stable, and the simulated cell population became heterogeneous, containing
comparable fractions of three single-positive phenotypes at the end of the simulation
(Fig. 1d, bar chart).

At S1 =~ 5, two further pitchfork bifurcations occur. Each single-positive state
changes to two stable steady states via a supercritical pitchfork bifurcation with twofold
symmetry, forming six stable steady states in total, and at a slightly higher signal
strength (S1 & 5.5), the system undergoes additional pitchfork bifurcations which
change these six stable steady states back to three stable steady states. These three new
stable steady states correspond to double-positive phenotypes (Fig. 1le). In the range
5.5 < S1 < 7.5, the system is tri-stable, and the simulated cell population became
heterogeneous, containing comparable fractions of three double-positive phenotypes
at the end of the simulation (Fig. le, bar chart).

At S1 = 7.5, the system undergoes another subcritical pitchfork bifurcation with
threefold symmetry, changing the three double-positive stable steady states to one
triple-positive steady state, and the system is mono-stable for S1 > 7.5 (Fig. 1f).

A more abstract approach was used by Ball and Schaeffer (1983) and Golubit-
sky et al. (1988) to analyze similar types of symmetrical bifurcations. More detailed
discussion of the bifurcation diagram in Fig. 1b is presented in the Supplementary
Text.

2.2 An Asymmetrical Differentiation System

We next analyzed a system with broken symmetry to illustrate how an asymmetrical
model differs from a symmetrical one. An asymmetrical model can be obtained by
making small perturbations to the model described in the previous subsection. In
particular, we changed the basal activation-state parameter for X from w% =-2to
— 2.1 and that for Y from a)?, = —2to — 1.9. Random perturbations of all parameter
values give similar results (not shown). Typically, the steady states of an asymmetrical
system have profiles similar to the bifurcation diagram shown in Fig. 2a.

Briefly, the asymmetrical model breaks the symmetry of the pitchfork bifurcations
in the symmetrical model. Similar to the symmetrical model, with increasing S1 the
system bifurcates from a mono-stable naive state (Fig. 2a vertical lines B and Fig. 2b)
to a system with three stable steady states (Fig. 2a vertical lines C and Fig. 2¢), but only
one of these differentiated states is connected to the naive state. The other two curves,
corresponding to single-positive states, form two loops (‘isolas’), disconnected from
the main branch of solutions. Each isola is bounded by two saddle-node bifurcation
points (for best illustration, see left plot of Fig. 2a vertical line C). In terms of cell differ-
entiation, one of the three single-positive phenotypes is favored because of the broken
symmetry and is more abundant in the final state of the simulation (Fig. 2c, bar chart).
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Fig. 2 Analysis of a motif with three master regulators with broken symmetry. a Bifurcation diagrams
with respect to S1. Solid curves, dashed curves and vertical gray lines as in Fig. 1. b—e Radar plots and bar
charts as in Fig. 1 (Color figure online)

For larger values of S1, three double-positive states exist in the system (Fig. 2a
vertical lines D and Fig. 2d), and for larger values still, the system has a single triple-
positive steady state (Fig. 2a vertical lines E and Fig. 2e).

2.3 A Fourfold Symmetrical Differentiation System
Using the same strategy, we analyzed a system with four master regulators W, X, Y

and Z (Fig. 3a). The parameter values listed in Supplementary Table S2 refer to a
symmetrical system.
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Fig. 3 Analysis of a motif with four master regulators. a Influence diagram of the model. b Bifurcation
diagram with respect to S1. Solid curves, dashed curves and vertical gray lines as in Fig. 1. c—g Radar plots
and bar charts as in Fig. 1 (Color figure online)
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We plot the bifurcation diagram for state variable W in Fig. 3b; the diagrams for
the other three state variables are similar. The system is mono-stable with one naive
state for 0 < S1 < 1.8 (Fig. 3b vertical line C and Fig. 3c). At S1 = 2, the
system undergoes subcritical bifurcations with fourfold symmetry, and the system is
tetra-stable (four single-positive, stable steady states) in the range 2.5 < S1 < 5.3
(Fig. 3b vertical line D and Fig. 3d). At S1 = 5.5, the system undergoes a pair
of pitchfork bifurcations, one with threefold symmetry and the other with twofold
symmetry, changing the four stable steady states to six double-positive steady states
(Fig. 3b vertical line E and Fig. 3e). At S1 = 9, the system undergoes another pair
of pitchfork bifurcations, changing the six stable steady states to four triple-positive
steady states (Fig. 3b vertical line F and Fig. 3f). At S1 = 12, the system undergoes a
pitchfork bifurcation with fourfold symmetry and becomes mono-stable for S1 > 12
(Fig. 3b vertical line G and Fig. 3g). Due to the symmetrical nature of the system,
in each of these multi-stable regions, comparable fractions of the phenotypes were
obtained in the simulation (bar charts in Fig. 3d—f).

As an example for an asymmetrical model with four master regulators, we present
a model for CD4™ T cell differentiation in the next subsection.

2.4 A System for CD4™ T Cell Differentiation with Four Master Regulators

Our model for CD4™ T cell differentiation is diagrammed in Fig. 4a. In addition to
the TCR signal, which is an example of the S1 signal previously analyzed, we intro-
duced various cytokines to the model. These cytokines serve as ‘polarizing’ signals
that can bias the differentiation into one (e.g., IL-4) or more (e.g., TGF-f) pheno-
types. Parameter values for this model are listed in Supplementary Table S3. These
values were optimized to give a good fit to the experimental observations listed in
Table 1. Basically, we simulated the experimental conditions in Table 1 by induc-
ing cell differentiation in our model equations with various exogenous signals and
recording the derived cell populations. Then, we varied the parameter values of the
model (ranges given in Supplementary Table S3) to optimize the fit of the model’s
predictions to the observed cell populations (Table 1). The optimization algorithm is
described in the Methods section. After optimizing our model in this way, we used our
mathematical framework to analyze some of the key facts regarding heterogeneous
differentiation.

With the T cell receptor signal alone, the model system can be multi-stable, exhibit-
ing all four single-positive states and the T-bet-RORYt double-positive state (Fig. 4b,
vertical lines C and Fig. 4c). When a population of simulated cells was exposed to
the TCR signal alone (Fig. 4c, bar chart), eighty percent of the population became
positive for T-bet (i.e., Tyl cells), and twenty percent expressed GATA3 (i.e., Ty2
cells). When the population was treated with higher strengths of TCR signal, a higher
fraction of T2 cells was obtained (Fig. 4d, e), in agreement with experimental results
by Yamashita et al. (1999). Interestingly, the model suggests that, although other
single-positive states are stable under TCR-activated conditions (without any other
exogenous signals), these phenotypes cannot be obtained by treating with TCR signal
alone. In the presence of both Tyl and Ty2 promoting cytokines, TCR induced the
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Fig.4 Analysis of the CD4™ T cell model. a Influence diagram of the model. b Bifurcation diagrams with
respect to TCR. Solid curves, dashed curves and vertical gray lines as in Fig. 1. c—e Radar plots and bar
charts as in Fig. 1. f Bifurcation diagrams with respect to TCR in the presence of 25 units of IL-12 and 25
units of IL-4. g Radar plots (as in Fig. 1) and simulation results with TCR signal indicated in (f) (Color
figure online)
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differentiation of T-bet-GATA3 double-positive phenotype (Fig. 4f, g), consistent with
the observations by Fang et al. (2013), Peine et al. (2013).

Heterogeneous differentiation of Tyl and Ty17 cells can be reproduced by the
model as well. As shown in Fig. 5a, b, in the presence of 5 units of IL-23, 5 units
of IL-6 and 5 units of IL-1, four stable steady states (T-bet-positive, GATA3-positive,
Foxp3-positive, and T-bet-RORYt double-positive) coexist for TCR = 2.5 units. The
simulation results (Fig. 5b, bar chart) show that a population of cells differentiates
primarily into T-bet-RORYt double-positive cells (20 %) and T-bet-positive cells (80
%), which is consistent with the observation by Ghoreschi et al. (2010).

The model reproduced heterogeneous differentiation of Ty 17 (RORYt-positive)and
iTRre (Foxp3-positive) cells under the condition of 5 units of TGF-B, 2.5 units of TCR
signal, 0.25 units of anti-IFNY and 0.75 units of anti-IL4 (Fig. 5c, d). A significant
fraction of RORYt-Foxp3 double-positive cells are also obtained under these condi-
tions, as observed by Zhou et al. (2008). The model predicts that the double-positive
phenotype is stable only with sufficient amount (> 4 units) of exogenous TGF-p and
that the single-positive cells can be stable without the exogenous TGF-B after the
completion of differentiation.

A list of simulation results and corresponding experimental evidences is provided
in Table 1.

3 Discussion

Early mathematical models of CD4" T cells mainly focused on robustness of their
differentiation process (Hofer et al. 2002; Mendoza 2006; van den Ham and de Boer
2008; Yates et al. 2004). Our recent models took into account heterogeneous differ-
entiation involving two master regulators (Hong et al. 2011, 2012). Similar modeling
studies have been done for other biological systems (Bell et al. 2007; Chang et al. 2008;
Guantes and Poyatos 2008; Huang et al. 2007). However, all of these models limited
their scope to two mutually inhibiting factors. Cinquin and Demongeot have identi-
fied a number of differentiation systems for which a generic motif with four mutually
inhibiting transcription factors could be a reasonable model (Cinquin and Demon-
geot 2002, 2005). A similar network has been analyzed for segment determination
process in Drosophila (Manu et al. 2009). The framework presented here provides a
novel analytic tool for understanding multi-stability in dynamical systems with many
mutual-inhibition motifs, to extend the theoretical results of Cinquin and Demongeot,
and others (Cinquin and Demongeot 2002, 2005; Manu et al. 2009; Mendoza 2013;
Naldi et al. 2010).

Although the models presented in this study have three or four master regulators, the
framework can be easily extended to more than four master regulators, which will be
necessary as more lineages and master regulators are being discovered in CD4™ T cells.
For example, the recently discovered follicular T cells (Try) (Crotty 2011), together
with their master regulator BCL-6, are known to participate in mutual-inhibition rela-
tionships (Kusam et al. 2003). When more information on this lineage becomes avail-
able, it can be included in the model, and the approach presented here can be used to
study heterogeneous differentiation involving five master regulators. In addition, using
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Fig.5 Analysis of the CD4T T cell model under additional conditions. a Bifurcation diagrams with respect
to TCR in the presence of 5 units of IL-23, 5 units of IL-6 and 5 units of IL-1. Solid curves, dashed curves
and vertical gray lines as in Fig. 1. b and d Radar plots and bar charts as in Fig. 1. ¢ Bifurcation diagrams
with respect to TGF-f in the presence of 2.5 units of TCR, 0.25 units of anti-IFNY and 0.75 units of anti-IL4
(Color figure online)

amathematical model for two master regulators, Huang et al. (2007) demonstrated that
near-symmetrical bifurcation can be critical for heterogeneous differentiation of two
lineages of blood cells, suggesting that heterogeneous differentiation might be a com-
mon phenomenon in biological systems. Potentially, our framework for understanding
heterogeneous differentiation involving more than two lineages in the neighborhood
of highly symmetrical bifurcation points can be applied to biological systems other
than CD4™" T cells.

We illustrated the general bifurcation scenario for perfectly symmetrical systems as
well as systems with slightly asymmetrical parameter values. For the general case, far
from symmetrical bifurcation points, the bifurcation scenario is much more complex
and difficult to study systematically. The major difference between a perfectly sym-
metrical case and an asymmetrical case is that in the symmetrical case, a particular
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value of signal strength S1 can only produce cells with a definite number of over-
expressed master regulators, e.g., in Fig 3, single-positive cells and double-positive
cells are found in distinct regions of S1 parameter values. For asymmetrical cases,
however, cells with different numbers of over-expressed master regulators can coexist
for the same S1 value (e.g., Fig. 4c). Nonetheless, analysis of systems with perfect or
nearly perfect symmetry is useful for understanding asymmetrical systems. From the
symmetrical case, we understand which types of steady states can possibly be gener-
ated by the gene network and how they arise, and any of these states might be found
in an asymmetrical system. In addition, although the asymmetrical bifurcation can be
very different from the perfectly symmetrical bifurcation, some general phenomenon
are conserved. For example, under conditions of low external signal strength (i.e.,
low TCR or cytokine-free conditions), the single-positive phenotype is easier to be
stabilized than the double-positive state (see, e.g., Fig 4c—f).

Our analysis shows that a double-positive phenotype is a stable cellular state rather
than a transient progenitor during differentiation. The existence of double-positive
states is due to the external signal overriding the internal mutual inhibitory relation-
ships. This explanation is consistent with the observations that external cytokine sig-
nals can give rise to T-bet-GATA3 double-positive cells and that blocking such signals
resulted in a heterogeneous mixture of T-bet™ and GATA3™ single-positive cells (Fang
etal. 2013) [also see the commentary article by Huang (2013)]. Peine et al. (Peine et al.
2013) also demonstrated that similar signaling conditions can produce T-bet-GATA3
double-positive cells. In addition, this phenotype can arise naturally without persis-
tent antigenic stimulus (Peine et al. 2013). In our model, however, this double-positive
phenotype requires the presence of TCR signaling. This fault of the model may be due
to its lack of positive feedback loops on longer time scales (discussed below).

Experimental studies of CD4™ T cells had focused on ‘polarizing’ conditions, for
which one phenotype dominates a population of differentiating cells. These stud-
ies provide useful information on signaling pathways controlling specific lineages of
CD4™ T cells, but they have limited relevance to physiological conditions, for which
differentiation often involves multiple phenotypes. Recently, heterogeneous differenti-
ation of Ty 1 and Ty2 cells with mixtures of opposing polarizing cytokines was studied
quantitatively by Antebi et al. (2013). Due to the large variety of CD4™ T cells, more
experimental studies on heterogeneous population of these cells are needed, and our
theoretical framework can provide a basis for understanding the system and designing
experiments.

Our model assumes mutual inhibitory relationships among all master regulators.
Although experimental demonstration of direct inhibition is still lacking for some of the
assumed interactions (Zhu and Paul 2010), indirect evidences support our assumptions.
For example, T-bet may not inhibit GATA3 directly (Hwang et al. 2005), but retroviral
T-bet expression in developing and established Ty?2 cells leads to down-regulation of
GATAZ3 levels (Usui et al. 2006), and GATA3 target genes are also inhibited by T-bet
(Hwang et al. 2005; Szabo et al. 2000). Moreover, mutually exclusive expression of
T-bet and GATA3 is observed in some experimental conditions (Fang et al. 2013).
Therefore, it is reasonable to assume a mutual-inhibition relationship between these
two master regulators. Nevertheless, our assumptions on direct mutual inhibitions need
to be validated experimentally in the future.
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Our model focuses on heterogeneous differentiation that occurs in the initial stages
of the CD4™" T cell lineage specification. Signaling events on a longer time scale (i.e.,
more than a week) may have significant influences on the derived populations, and
these factors might not be captured by our modeling framework. In particular, these
events might be responsible for the irreversible commitment of differentiated cell
lines (Murphy et al. 1996). Irreversible differentiation of T cell phenotypes are not
observed in our simulations (e.g., Fig. 4c). Nonetheless, our model can potentially be
extended to take into account irreversible differentiation by adding some slow positive
feedback loops that reinforce the differentiation on a longer time scale. These positive
feedback loops might be additional autocrine effects or epigenetic modifications. In
addition, our model for CD4™ T cells neglects the fact that T cell differentiation can be
influenced by inter-cellular signals. In other words, cytokines secreted by one cell can
influence the behaviors of other cells. A consideration of such cross talk will be the
subject of future studies. In addition, the rates of proliferation of different cell types
can have significant effects on the composition of the heterogeneous cell population,
as observed in CD8™ T cells (Gerlach et al. 2013). Therefore, a consideration of cell
proliferation is needed in future models.
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Appendix: Methods
Dynamical Models

We build mathematical models of three different signaling motifs (two generic motifs
and one motif specific to T cell differentiation). For each case, we use a generic form
of ordinary differential equations (ODESs) suitable for describing both gene expres-
sion and protein interaction networks (Mjolsness et al. 1991; Tyson and Novak 2010;
Wilson and Cowan 1972). Each ODE in the model has the form:

dx;
- = (F(oy W) — X))
FoW) = 1/ (1 +e*"W)

N
Wi = w;’—l—ijﬁ,-Xj
J
i=1,..N (D

Here, X; is the activity or concentration of protein i. On a time scale = 1/y;, X;(¢)
relaxes toward a value determined by the sigmoidal function, F', which has a steepness
set by o;. The basal value of F, in the absence of any influencing factors, is determined
by . The coefficients w;_,; determine the influence of protein j on protein i. N is
the total number of proteins in the network.
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All variables and parameters are dimensionless. One time unit in the simulations
corresponds to approximately 1 day. Basal parameter values of each model are listed
in supplementary tables (see ‘Cell-to-Cell Variability’ subsection for details).

All simulations and bifurcation analyses were performed with PyDSTool, a software
environment for dynamical systems (Clewley 2012).

Bifurcation Diagrams and Steady State Radar Plots

One parameter bifurcation diagrams were plotted by following the steady state solution
of the ODEs with change in the value of a control parameter.

In order to analyze the behavior of multi-variable systems, we use radar plots to
illustrate the steady states for a particular parameter set. A radar plot depicts the
expression level of each key state variable (i.e., master regulator) on one sub-plot,
and multiple sub-plots describe multiple steady states. In principle, a radar plot can
illustrate unstable steady states as well as stable steady states, but we plot only stable
steady states, which correspond to observable cell phenotypes.

Cell-to-Cell Variability

To account for cell-to-cell variability in a population, we made many simulations of
the system of ODEs, each time with a slightly different choice of parameter values
(to represent slight differences from cell to cell). We assumed that the value of each
parameter conforms to a normal distribution with CV = 0.05 (CV = coefficient of
variation = standard deviation/mean). We refer to the mean value for each parameter
distribution as the ‘basal’ value of that parameter. In the bifurcation analysis of the
dynamical system, we consider an imaginary cell that adopts the basal value for each of
its parameters, and we define this cell as the ‘average’ cell. However, none of the cells
in the simulated population is likely to be this average cell, because every parameter
value is likely to deviate a little from the basal value.

Simulation Procedure

In order to simulate the induced differentiation process, we first solved the ODEs
numerically with small initial values of master regulator concentrations in the absence
of any exogenous signals. After a short period of time, each simulated cell found its
own, stable ‘naive’ steady state in which all master regulators are expressed at low
level. Next, we changed the exogenous signals to the values listed in Supplementary
Tables S1, S2 and S3 and continued the numerical simulation. Each cell arrived at its
corresponding ‘induced’ phenotype, which might vary from cell to cell because of the
parametric variability of the population. The expression level of each protein in the
network ranges from O to 1 unit, and we made the simple assumption that a protein is
‘expressed’ if its level is greater than 0.5 units. We defined the derived population as
‘heterogeneous’ if it contained cells with more than one phenotype.
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Parameter Optimization

Before starting to optimize the model parameters, we defined a hyperbox in the para-
meter space that is bounded by biologically plausible parameter ranges. These ranges
are listed in Supplementary Table S3. A population of 200 parameter vectors, gener-
ated by Latin hypercube sampling (LHS), captured from 3 to 14 of the 22 experimental
constraints that are listed in Table 1 (there are 22 independent constraints in 14 dif-
ferent experimental conditions). Starting with this population, we next implemented
Differential Evolution (DE). The two-stage optimization approach based on LHS and
DE has been presented previously by Oguz et al. (2013). Details of LHS and DE are
provided in the Supplementary Text. For the initial round of DE, we used an aggressive
mutation operator (F = 0.1 in Eq. (2) of Supplementary Text) and a non-greedy selec-
tion condition. After 900 generations of DE, we obtained several parameter vectors
that captured 19 of the 21 experimental constraints. We also identified that Constraint 1
(shown in Table 1) was the experimental constraint with the lowest acceptance (0.03 %)
among the parameter vectors generated by DE (200 x 900 = 180,000 vectors). In the
second round of DE, starting with the 57 parameter vectors that captured Constraint 1,
we used a more conservative mutation operator (F = 0.01) and a non-greedy selection
condition in order to maximize the number of total constraints captured. In addition,
we enforced Constraint 1 at every step; a mutant vector could only replace a parent if
it captured Constraint 1. After ~500 generations, we found several feasible parameter
vectors that captured 18-22 of the 22 experimental constraints. The optimized para-
meter values from the most robust feasible vector are given in Supplementary Table
S3. The robustness measure that we used in the robustness analysis is described in
Sect. 3 of the Supplementary Text (last paragraph).
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